Moved kalman computation into cpp to improve compile speed

This commit is contained in:
2019-10-08 13:59:58 +02:00
parent f9d2b10839
commit 5b20b67e5f
3 changed files with 56 additions and 50 deletions

View File

@@ -1,17 +1,14 @@
#pragma once
#include <eigen3/Eigen/Eigen>
#include <Indoor/data/Timestamp.h>
struct Kalman
{
int nucID = 0; // debug only
Eigen::Matrix<float, 2, 1> x; // predicted state
Eigen::Matrix<float, 2, 2> P; // Covariance
float x[2]; // predicted state
float P[4]; // Covariance
float R = 30; // measurement noise covariance
float processNoiseDistance; // stdDev
float processNoiseVelocity; // stdDev
@@ -28,50 +25,7 @@ struct Kalman
: nucID(nucID), R(measStdDev*measStdDev), processNoiseDistance(processNoiseDistance), processNoiseVelocity(processNoiseVelocity)
{}
float predict(const Timestamp timestamp, const float measurment)
{
constexpr auto square = [](float x) { return x * x; };
const auto I = Eigen::Matrix2f::Identity();
// init kalman filter
if (isnan(lastTimestamp))
{
P << 10, 0,
0, 10; // Initial Uncertainty
x << measurment,
0;
}
const float dt = isnan(lastTimestamp) ? 1 : timestamp.sec() - lastTimestamp;
lastTimestamp = timestamp.sec();
Eigen::Matrix<float, 1, 2> H; // Measurement function
H << 1, 0;
Eigen::Matrix2f A; // Transition Matrix
A << 1, dt,
0, 1;
Eigen::Matrix2f Q; // Process Noise Covariance
Q << square(processNoiseDistance), 0,
0, square(processNoiseVelocity);
// Prediction
x = A * x; // Prädizierter Zustand aus Bisherigem und System
P = A * P*A.transpose()+Q; // Prädizieren der Kovarianz
// Correction
float Z = measurment;
auto y = Z - (H*x); // Innovation aus Messwertdifferenz
auto S = (H*P*H.transpose()+R); // Innovationskovarianz
auto K = P * H.transpose()* (1/S); //Filter-Matrix (Kalman-Gain)
x = x + (K*y); // aktualisieren des Systemzustands
P = (I - (K*H))*P; // aktualisieren der Kovarianz
return x(0);
}
float predict(const Timestamp timestamp, const float measurment);
};