Moved kalman computation into cpp to improve compile speed
This commit is contained in:
@@ -1,17 +1,14 @@
|
||||
#pragma once
|
||||
|
||||
#include <eigen3/Eigen/Eigen>
|
||||
|
||||
#include <Indoor/data/Timestamp.h>
|
||||
|
||||
|
||||
struct Kalman
|
||||
{
|
||||
int nucID = 0; // debug only
|
||||
|
||||
Eigen::Matrix<float, 2, 1> x; // predicted state
|
||||
Eigen::Matrix<float, 2, 2> P; // Covariance
|
||||
|
||||
float x[2]; // predicted state
|
||||
float P[4]; // Covariance
|
||||
|
||||
float R = 30; // measurement noise covariance
|
||||
float processNoiseDistance; // stdDev
|
||||
float processNoiseVelocity; // stdDev
|
||||
@@ -28,50 +25,7 @@ struct Kalman
|
||||
: nucID(nucID), R(measStdDev*measStdDev), processNoiseDistance(processNoiseDistance), processNoiseVelocity(processNoiseVelocity)
|
||||
{}
|
||||
|
||||
float predict(const Timestamp timestamp, const float measurment)
|
||||
{
|
||||
constexpr auto square = [](float x) { return x * x; };
|
||||
const auto I = Eigen::Matrix2f::Identity();
|
||||
|
||||
// init kalman filter
|
||||
if (isnan(lastTimestamp))
|
||||
{
|
||||
P << 10, 0,
|
||||
0, 10; // Initial Uncertainty
|
||||
|
||||
x << measurment,
|
||||
0;
|
||||
}
|
||||
|
||||
const float dt = isnan(lastTimestamp) ? 1 : timestamp.sec() - lastTimestamp;
|
||||
lastTimestamp = timestamp.sec();
|
||||
|
||||
Eigen::Matrix<float, 1, 2> H; // Measurement function
|
||||
H << 1, 0;
|
||||
|
||||
Eigen::Matrix2f A; // Transition Matrix
|
||||
A << 1, dt,
|
||||
0, 1;
|
||||
|
||||
Eigen::Matrix2f Q; // Process Noise Covariance
|
||||
Q << square(processNoiseDistance), 0,
|
||||
0, square(processNoiseVelocity);
|
||||
|
||||
// Prediction
|
||||
x = A * x; // Prädizierter Zustand aus Bisherigem und System
|
||||
P = A * P*A.transpose()+Q; // Prädizieren der Kovarianz
|
||||
|
||||
// Correction
|
||||
float Z = measurment;
|
||||
auto y = Z - (H*x); // Innovation aus Messwertdifferenz
|
||||
auto S = (H*P*H.transpose()+R); // Innovationskovarianz
|
||||
auto K = P * H.transpose()* (1/S); //Filter-Matrix (Kalman-Gain)
|
||||
|
||||
x = x + (K*y); // aktualisieren des Systemzustands
|
||||
P = (I - (K*H))*P; // aktualisieren der Kovarianz
|
||||
|
||||
return x(0);
|
||||
}
|
||||
float predict(const Timestamp timestamp, const float measurment);
|
||||
};
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user