Added moving average

This commit is contained in:
2019-07-02 10:36:24 +02:00
parent 2c4d0beacc
commit 4415288cda
5 changed files with 263 additions and 181 deletions

View File

@@ -13,6 +13,8 @@ struct Kalman
Eigen::Matrix<float, 2, 2> P; // Covariance Eigen::Matrix<float, 2, 2> P; // Covariance
float R = 30; // measurement noise covariance float R = 30; // measurement noise covariance
float processNoiseDistance; // stdDev
float processNoiseVelocity; // stdDev
float lastTimestamp = NAN; // in sec float lastTimestamp = NAN; // in sec
@@ -22,8 +24,8 @@ struct Kalman
: nucID(nucID) : nucID(nucID)
{} {}
Kalman(int nucID, float measStdDev) Kalman(int nucID, float measStdDev, float processNoiseDistance = 0.2, float processNoiseVelocity = 0.4)
: nucID(nucID), R(measStdDev*measStdDev) : nucID(nucID), R(measStdDev*measStdDev), processNoiseDistance(processNoiseDistance), processNoiseVelocity(processNoiseVelocity)
{} {}
float predict(const Timestamp timestamp, const float measurment) float predict(const Timestamp timestamp, const float measurment)
@@ -52,8 +54,8 @@ struct Kalman
0, 1; 0, 1;
Eigen::Matrix2f Q; // Process Noise Covariance Eigen::Matrix2f Q; // Process Noise Covariance
Q << 0, 0, Q << square(processNoiseDistance), 0,
0, square(0.3); 0, square(processNoiseVelocity);
// Prediction // Prediction
x = A * x; // Pr<50>dizierter Zustand aus Bisherigem und System x = A * x; // Pr<50>dizierter Zustand aus Bisherigem und System

View File

@@ -93,6 +93,8 @@ namespace Settings {
const std::string dataDir = "../measurements/data/"; const std::string dataDir = "../measurements/data/";
const std::string errorDir = "../measurements/error/"; const std::string errorDir = "../measurements/error/";
const bool UseKalman = false;
/** describes one dataset (map, training, parameter-estimation, ...) */ /** describes one dataset (map, training, parameter-estimation, ...) */
const MACAddress NUC1("38:de:ad:6d:77:25"); const MACAddress NUC1("38:de:ad:6d:77:25");
@@ -107,6 +109,9 @@ namespace Settings {
float ftm_offset = 0.0f; float ftm_offset = 0.0f;
float rssi_pathloss = 0.0f; float rssi_pathloss = 0.0f;
float kalman_measStdDev = 0.0f; float kalman_measStdDev = 0.0f;
float kalman_procNoiseDistStdDev = 0.0f; // standard deviation of distance for process noise
float kalman_procNoiseVelStdDev = 0.0f; // standard deviation of velocity for process noise
}; };
struct DataSetup { struct DataSetup {
@@ -224,7 +229,7 @@ namespace Settings {
{ 0, 1, 2, 11, 10, 9, 10, 11, 2, 6, 5, 12, 13, 12, 5, 6, 7, 8 } { 0, 1, 2, 11, 10, 9, 10, 11, 2, 6, 5, 12, 13, 12, 5, 6, 7, 8 }
}; };
const DataSetup CurrentPath = Path3; const DataSetup CurrentPath = Path5;
} data; } data;

View File

@@ -318,12 +318,17 @@ public:
particlePos.z = 1.3; // smartphone h<>he particlePos.z = 1.3; // smartphone h<>he
float apDist = particlePos.getDistance(apPos); float apDist = particlePos.getDistance(apPos);
auto kalman = kalmanMap->at(wifi.second.getAP().getMAC()); if (Settings::UseKalman)
{
pFtm *= Distribution::Normal<float>::getProbability(ftmDist, std::sqrt(kalman.P(0,0)), apDist); auto kalman = kalmanMap->at(wifi.second.getAP().getMAC());
//pFtm *= Distribution::Normal<float>::getProbability(apDist, 3.5, ftmDist); pFtm *= Distribution::Normal<float>::getProbability(ftmDist, std::sqrt(kalman.P(0,0)), apDist);
//pFtm *= Distribution::Region<float>::getProbability(apDist, 3.5/2, ftmDist); }
} else
{
pFtm *= Distribution::Normal<float>::getProbability(apDist, 3.5, ftmDist);
//pFtm *= Distribution::Region<float>::getProbability(apDist, 3.5/2, ftmDist);
}
}
} }

View File

@@ -6,6 +6,7 @@
#include "meshPlotter.h" #include "meshPlotter.h"
#include "Plotty.h" #include "Plotty.h"
#include <array>
#include <memory> #include <memory>
#include <thread> #include <thread>
#include <filesystem> #include <filesystem>
@@ -32,6 +33,152 @@
using namespace std::chrono_literals; using namespace std::chrono_literals;
std::vector<std::tuple<float, float, float>> getFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator, const MACAddress nuc)
{
std::vector<std::tuple<float, float, float>> result;
for (const Offline::Entry& e : fr.getEntries())
{
if (e.type == Offline::Sensor::WIFI_FTM)
{
const Timestamp ts = Timestamp::fromMS(e.ts);
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
auto wifi = fr.getWifiFtm()[e.idx].data;
if (wifi.getAP().getMAC() == nuc)
{
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
float apDist = gtPos.getDistance(apPos);
float ftmDist = wifi.getFtmDist();
float rssi = wifi.getRSSI();
result.push_back({ apDist, ftmDist, rssi });
}
}
}
return result;
}
std::pair<float, float> optimizeFtm(std::vector<std::tuple<float, float, float>>& values)
{
std::vector<std::pair<float, float>> error;
for (float offset = 0; offset < 10.0f; offset += 0.25)
{
Stats::Statistics<float> diffs;
for (const auto& data : values)
{
float apDist = std::get<0>(data);
float ftmDist = std::get<1>(data);
ftmDist += offset;
float diff = (apDist - ftmDist);
diffs.add(diff);
}
error.push_back({ offset, diffs.getSquaredSumAvg() });
}
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
return a.second < b.second;
});
std::cout << "Min ftm offset \t" << minElement->first << "\t" << minElement->second << "\n";
return *minElement;
}
std::pair<float, float> optimizeRssi(std::vector<std::tuple<float, float, float>>& values)
{
std::vector<std::pair<float, float>> error;
for (float pathLoss = 2.0f; pathLoss < 4.0f; pathLoss += 0.125)
{
Stats::Statistics<float> diffs;
for (const auto& data : values)
{
float apDist = std::get<0>(data);
float rssi = std::get<2>(data);
float rssiDist = LogDistanceModel::rssiToDistance(-40, pathLoss, rssi);
float diff = (apDist - rssiDist);
diffs.add(diff);
}
error.push_back({ pathLoss, diffs.getSquaredSumAvg() });
}
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
return a.second < b.second;
});
std::cout << "Min path loss \t" << minElement->first << "\t" << minElement->second << "\n";
return *minElement;
}
void optimizeWifiParameters(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
{
int i = 1;
for (auto nuc : { Settings::NUC1, Settings::NUC2, Settings::NUC3, Settings::NUC4 })
{
auto values = getFtmValues(fr, gtInterpolator, nuc);
std::cout << "NUC" << i++ << "\n";
optimizeFtm(values);
optimizeRssi(values);
}
}
void exportFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
{
std::fstream fs;
fs.open("test.txt", std::fstream::out);
fs << "timestamp;nucid;dist;rssiDist;ftmDist;ftmStdDev;numMeas;numSuccesMeas" << "\n";
for (const Offline::Entry& e : fr.getEntries())
{
if (e.type == Offline::Sensor::WIFI_FTM)
{
const Timestamp ts = Timestamp::fromMS(e.ts);
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
auto wifi = fr.getWifiFtm()[e.idx].data;
int nucid = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ID;
float ftm_offset = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ftm_offset;
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).rssi_pathloss;
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
float ftmDist = wifi.getFtmDist() + ftm_offset; //in m; plus static offset
float ftmStdDev = wifi.getFtmDistStd();
int numMeas = wifi.getNumAttemptedMeasurements();
int numSuccessMeas = wifi.getNumSuccessfulMeasurements();
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
float apDist = gtPos.getDistance(apPos);
fs << ts.ms() << ";" << nucid << ";" << apDist << ";" << rssiDist << ";" << ftmDist << ";" << ftmStdDev << ";" << numMeas << ";" << numSuccessMeas << "\n";
}
}
fs.close();
}
static float kalman_procNoiseDistStdDev = 1.2f; // standard deviation of distance for process noise
static float kalman_procNoiseVelStdDev = 0.1f; // standard deviation of velocity for process noise
static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) { static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) {
// reading file // reading file
@@ -69,11 +216,13 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
// wifi // wifi
auto kalmanMap = std::make_shared<std::unordered_map<MACAddress, Kalman>>(); auto kalmanMap = std::make_shared<std::unordered_map<MACAddress, Kalman>>();
kalmanMap->insert({ Settings::NUC1, Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev) }); kalmanMap->insert({ Settings::NUC1, Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
kalmanMap->insert({ Settings::NUC2, Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev) }); kalmanMap->insert({ Settings::NUC2, Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
kalmanMap->insert({ Settings::NUC3, Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev) }); kalmanMap->insert({ Settings::NUC3, Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
kalmanMap->insert({ Settings::NUC4, Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev) }); kalmanMap->insert({ Settings::NUC4, Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
std::cout << "Optimal wifi parameters for " << setup.training[numFile] << "\n";
optimizeWifiParameters(fr, gtInterpolator);
// mesh // mesh
NM::NavMeshSettings set; NM::NavMeshSettings set;
@@ -148,12 +297,35 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
float ftm_offset = Settings::data.CurrentPath.NUCs.at(ftm.getAP().getMAC()).ftm_offset; float ftm_offset = Settings::data.CurrentPath.NUCs.at(ftm.getAP().getMAC()).ftm_offset;
float ftmDist = ftm.getFtmDist() + ftm_offset; // in m; plus static offset float ftmDist = ftm.getFtmDist() + ftm_offset; // in m; plus static offset
auto& kalman = kalmanMap->at(ftm.getAP().getMAC());
float predictDist = kalman.predict(ts, ftmDist);
ftm.setFtmDist(predictDist); if (Settings::UseKalman)
{
auto& kalman = kalmanMap->at(ftm.getAP().getMAC());
float predictDist = kalman.predict(ts, ftmDist);
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm); ftm.setFtmDist(predictDist);
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm);
}
else
{
// MOV AVG
if (obs.wifi.count(ftm.getAP().getMAC()) == 0)
{
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm);
}
else
{
auto currFtm = obs.wifi.find(ftm.getAP().getMAC());
float currDist = currFtm->second.getFtmDist();
const float alpha = 0.6;
float newDist = alpha * currDist + (1 - alpha) * ftmDist;
currFtm->second.setFtmDist(newDist);
}
}
} else if (e.type == Offline::Sensor::WIFI) { } else if (e.type == Offline::Sensor::WIFI) {
//obs.wifi = fr.getWiFiGroupedByTime()[e.idx].data; //obs.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
//ctrl.wifi = fr.getWiFiGroupedByTime()[e.idx].data; //ctrl.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
@@ -256,7 +428,6 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
} }
// get someting on console // get someting on console
std::cout << "Statistical Analysis Filtering: " << std::endl; std::cout << "Statistical Analysis Filtering: " << std::endl;
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl; std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl;
@@ -275,8 +446,8 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
mainFtm(argc, argv); //mainFtm(argc, argv);
return 0; //return 0;
Stats::Statistics<float> statsAVG; Stats::Statistics<float> statsAVG;
@@ -287,16 +458,65 @@ int main(int argc, char** argv)
std::string evaluationName = "prologic/tmp"; std::string evaluationName = "prologic/tmp";
for(int i = 0; i < 2; ++i){ std::vector<std::array<float, 3>> error;
std::ofstream error_out;
error_out.open(Settings::errorDir + evaluationName + "_error_path1" + ".csv", std::ios_base::app);
tmp = run(Settings::data.CurrentPath, 0, evaluationName);
statsMedian.add(tmp.getMedian());
statsAVG.add(tmp.getAvg());
statsSTD.add(tmp.getStdDev());
statsQuantil.add(tmp.getQuantile(0.75));
std::cout << "Iteration " << i << " completed" << std::endl; //for (kalman_procNoiseDistStdDev = 0.8f; kalman_procNoiseDistStdDev < 1.5f; kalman_procNoiseDistStdDev += 0.1f)
} //{
// for (kalman_procNoiseVelStdDev = 0.1f; kalman_procNoiseVelStdDev < 0.5f; kalman_procNoiseVelStdDev += 0.1f)
// {
for (int i = 0; i < 2; ++i) {
tmp = run(Settings::data.CurrentPath, 0, evaluationName);
statsMedian.add(tmp.getMedian());
statsAVG.add(tmp.getAvg());
statsSTD.add(tmp.getStdDev());
statsQuantil.add(tmp.getQuantile(0.75));
std::cout << kalman_procNoiseDistStdDev << " " << kalman_procNoiseVelStdDev << std::endl;
std::cout << "Iteration " << i << " completed" << std::endl;
}
// error.push_back({{ kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev, statsAVG.getAvg() }});
// auto minElement = std::min_element(error.begin(), error.end(), [](std::array<float, 3> a, std::array<float, 3> b) {
// return a[2] < b[2];
// });
// std::cout << "Current min error " << (*minElement)[2] << "\t Q(0)=\t" << (*minElement)[0] << "\t Q(1)=" << (*minElement)[1] << "\n";
// error_out << kalman_procNoiseDistStdDev << ";" << kalman_procNoiseVelStdDev << ";" << statsAVG.getAvg() << std::endl;
// // reset stats
// statsAVG.reset();
// statsMedian.reset();
// statsSTD.reset();
// statsQuantil.reset();
// }
//}
//auto minElement = std::min_element(error.begin(), error.end(), [](std::array<float, 3> a, std::array<float, 3> b) {
// return a[2] < b[2];
//});
//std::cout << "Global Min error " << (*minElement)[2] << "\t Q(0)=\t" << (*minElement)[0] << "\t Q(1)=" << (*minElement)[1] << "\n";
//error_out.close();
//for(int i = 0; i < 2; ++i){
//
// tmp = run(Settings::data.CurrentPath, 0, evaluationName);
// statsMedian.add(tmp.getMedian());
// statsAVG.add(tmp.getAvg());
// statsSTD.add(tmp.getStdDev());
// statsQuantil.add(tmp.getQuantile(0.75));
// std::cout << "Iteration " << i << " completed" << std::endl;
//}
std::cout << "==========================================================" << std::endl; std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data: " << std::endl; std::cout << "Average of all statistical data: " << std::endl;

View File

@@ -29,150 +29,6 @@
#include <sys/stat.h> #include <sys/stat.h>
using namespace std::chrono_literals;
std::vector<std::tuple<float, float, float>> getFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator, const MACAddress nuc)
{
std::vector<std::tuple<float, float, float>> result;
for (const Offline::Entry& e : fr.getEntries())
{
if (e.type == Offline::Sensor::WIFI_FTM)
{
const Timestamp ts = Timestamp::fromMS(e.ts);
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
auto wifi = fr.getWifiFtm()[e.idx].data;
if (wifi.getAP().getMAC() == nuc)
{
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
float apDist = gtPos.getDistance(apPos);
float ftmDist = wifi.getFtmDist();
float rssi = wifi.getRSSI();
result.push_back({ apDist, ftmDist, rssi });
}
}
}
return result;
}
std::pair<float, float> optimizeFtm(std::vector<std::tuple<float, float, float>>& values)
{
std::vector<std::pair<float, float>> error;
for (float offset = 0; offset < 10.0f; offset += 0.25)
{
Stats::Statistics<float> diffs;
for (const auto& data : values)
{
float apDist = std::get<0>(data);
float ftmDist = std::get<1>(data);
ftmDist += offset;
float diff = (apDist - ftmDist);
diffs.add(diff);
}
error.push_back({ offset, diffs.getSquaredSumAvg() });
}
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
return a.second < b.second;
});
std::cout << "Min ftm offset \t" << minElement->first << "\t" << minElement->second << "\n";
return *minElement;
}
std::pair<float, float> optimizeRssi(std::vector<std::tuple<float, float, float>>& values)
{
std::vector<std::pair<float, float>> error;
for (float pathLoss = 2.0f; pathLoss < 4.0f; pathLoss += 0.125)
{
Stats::Statistics<float> diffs;
for (const auto& data : values)
{
float apDist = std::get<0>(data);
float rssi = std::get<2>(data);
float rssiDist = LogDistanceModel::rssiToDistance(-40, pathLoss, rssi);
float diff = (apDist - rssiDist);
diffs.add(diff);
}
error.push_back({ pathLoss, diffs.getSquaredSumAvg() });
}
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
return a.second < b.second;
});
std::cout << "Min path loss \t" << minElement->first << "\t" << minElement->second << "\n";
return *minElement;
}
void optimize(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
{
int i = 1;
for (auto nuc : {Settings::NUC1, Settings::NUC2, Settings::NUC3, Settings::NUC4})
{
auto values = getFtmValues(fr, gtInterpolator, nuc);
std::cout << "NUC" << i++ << "\n";
optimizeFtm(values);
optimizeRssi(values);
}
}
void exportFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
{
std::fstream fs;
fs.open("test.txt", std::fstream::out);
fs << "timestamp;nucid;dist;rssiDist;ftmDist;ftmStdDev;numMeas;numSuccesMeas" << "\n";
for (const Offline::Entry& e : fr.getEntries())
{
if (e.type == Offline::Sensor::WIFI_FTM)
{
const Timestamp ts = Timestamp::fromMS(e.ts);
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
auto wifi = fr.getWifiFtm()[e.idx].data;
int nucid = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ID;
float ftm_offset = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ftm_offset;
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).rssi_pathloss;
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
float ftmDist = wifi.getFtmDist() + ftm_offset; //in m; plus static offset
float ftmStdDev = wifi.getFtmDistStd();
int numMeas = wifi.getNumAttemptedMeasurements();
int numSuccessMeas = wifi.getNumSuccessfulMeasurements();
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
float apDist = gtPos.getDistance(apPos);
fs << ts.ms() << ";" << nucid << ";" << apDist << ";" << rssiDist << ";" << ftmDist << ";" << ftmStdDev << ";" << numMeas << ";" << numSuccessMeas << "\n";
}
}
fs.close();
}
static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) { static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) {
// reading file // reading file
@@ -276,12 +132,6 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) ); relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
Timestamp lastTimestamp = Timestamp::fromMS(0); Timestamp lastTimestamp = Timestamp::fromMS(0);
//optimize(fr, gtInterpolator);
//return errorStats;
int i = 0;
//exportFtmValues(fr, gtInterpolator);
// parse each sensor-value within the offline data // parse each sensor-value within the offline data
for (const Offline::Entry& e : fr.getEntries()) { for (const Offline::Entry& e : fr.getEntries()) {