Added moving average
This commit is contained in:
@@ -13,6 +13,8 @@ struct Kalman
|
|||||||
Eigen::Matrix<float, 2, 2> P; // Covariance
|
Eigen::Matrix<float, 2, 2> P; // Covariance
|
||||||
|
|
||||||
float R = 30; // measurement noise covariance
|
float R = 30; // measurement noise covariance
|
||||||
|
float processNoiseDistance; // stdDev
|
||||||
|
float processNoiseVelocity; // stdDev
|
||||||
|
|
||||||
float lastTimestamp = NAN; // in sec
|
float lastTimestamp = NAN; // in sec
|
||||||
|
|
||||||
@@ -22,8 +24,8 @@ struct Kalman
|
|||||||
: nucID(nucID)
|
: nucID(nucID)
|
||||||
{}
|
{}
|
||||||
|
|
||||||
Kalman(int nucID, float measStdDev)
|
Kalman(int nucID, float measStdDev, float processNoiseDistance = 0.2, float processNoiseVelocity = 0.4)
|
||||||
: nucID(nucID), R(measStdDev*measStdDev)
|
: nucID(nucID), R(measStdDev*measStdDev), processNoiseDistance(processNoiseDistance), processNoiseVelocity(processNoiseVelocity)
|
||||||
{}
|
{}
|
||||||
|
|
||||||
float predict(const Timestamp timestamp, const float measurment)
|
float predict(const Timestamp timestamp, const float measurment)
|
||||||
@@ -52,8 +54,8 @@ struct Kalman
|
|||||||
0, 1;
|
0, 1;
|
||||||
|
|
||||||
Eigen::Matrix2f Q; // Process Noise Covariance
|
Eigen::Matrix2f Q; // Process Noise Covariance
|
||||||
Q << 0, 0,
|
Q << square(processNoiseDistance), 0,
|
||||||
0, square(0.3);
|
0, square(processNoiseVelocity);
|
||||||
|
|
||||||
// Prediction
|
// Prediction
|
||||||
x = A * x; // Pr<50>dizierter Zustand aus Bisherigem und System
|
x = A * x; // Pr<50>dizierter Zustand aus Bisherigem und System
|
||||||
|
|||||||
@@ -93,6 +93,8 @@ namespace Settings {
|
|||||||
const std::string dataDir = "../measurements/data/";
|
const std::string dataDir = "../measurements/data/";
|
||||||
const std::string errorDir = "../measurements/error/";
|
const std::string errorDir = "../measurements/error/";
|
||||||
|
|
||||||
|
const bool UseKalman = false;
|
||||||
|
|
||||||
/** describes one dataset (map, training, parameter-estimation, ...) */
|
/** describes one dataset (map, training, parameter-estimation, ...) */
|
||||||
|
|
||||||
const MACAddress NUC1("38:de:ad:6d:77:25");
|
const MACAddress NUC1("38:de:ad:6d:77:25");
|
||||||
@@ -107,6 +109,9 @@ namespace Settings {
|
|||||||
float ftm_offset = 0.0f;
|
float ftm_offset = 0.0f;
|
||||||
float rssi_pathloss = 0.0f;
|
float rssi_pathloss = 0.0f;
|
||||||
float kalman_measStdDev = 0.0f;
|
float kalman_measStdDev = 0.0f;
|
||||||
|
|
||||||
|
float kalman_procNoiseDistStdDev = 0.0f; // standard deviation of distance for process noise
|
||||||
|
float kalman_procNoiseVelStdDev = 0.0f; // standard deviation of velocity for process noise
|
||||||
};
|
};
|
||||||
|
|
||||||
struct DataSetup {
|
struct DataSetup {
|
||||||
@@ -224,7 +229,7 @@ namespace Settings {
|
|||||||
{ 0, 1, 2, 11, 10, 9, 10, 11, 2, 6, 5, 12, 13, 12, 5, 6, 7, 8 }
|
{ 0, 1, 2, 11, 10, 9, 10, 11, 2, 6, 5, 12, 13, 12, 5, 6, 7, 8 }
|
||||||
};
|
};
|
||||||
|
|
||||||
const DataSetup CurrentPath = Path3;
|
const DataSetup CurrentPath = Path5;
|
||||||
|
|
||||||
} data;
|
} data;
|
||||||
|
|
||||||
|
|||||||
@@ -318,13 +318,18 @@ public:
|
|||||||
particlePos.z = 1.3; // smartphone h<>he
|
particlePos.z = 1.3; // smartphone h<>he
|
||||||
float apDist = particlePos.getDistance(apPos);
|
float apDist = particlePos.getDistance(apPos);
|
||||||
|
|
||||||
|
if (Settings::UseKalman)
|
||||||
|
{
|
||||||
auto kalman = kalmanMap->at(wifi.second.getAP().getMAC());
|
auto kalman = kalmanMap->at(wifi.second.getAP().getMAC());
|
||||||
|
|
||||||
pFtm *= Distribution::Normal<float>::getProbability(ftmDist, std::sqrt(kalman.P(0,0)), apDist);
|
pFtm *= Distribution::Normal<float>::getProbability(ftmDist, std::sqrt(kalman.P(0,0)), apDist);
|
||||||
//pFtm *= Distribution::Normal<float>::getProbability(apDist, 3.5, ftmDist);
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
pFtm *= Distribution::Normal<float>::getProbability(apDist, 3.5, ftmDist);
|
||||||
//pFtm *= Distribution::Region<float>::getProbability(apDist, 3.5/2, ftmDist);
|
//pFtm *= Distribution::Region<float>::getProbability(apDist, 3.5/2, ftmDist);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
double prob = pFtm;
|
double prob = pFtm;
|
||||||
|
|||||||
234
code/main.cpp
234
code/main.cpp
@@ -6,6 +6,7 @@
|
|||||||
#include "meshPlotter.h"
|
#include "meshPlotter.h"
|
||||||
#include "Plotty.h"
|
#include "Plotty.h"
|
||||||
|
|
||||||
|
#include <array>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <filesystem>
|
#include <filesystem>
|
||||||
@@ -32,6 +33,152 @@
|
|||||||
|
|
||||||
using namespace std::chrono_literals;
|
using namespace std::chrono_literals;
|
||||||
|
|
||||||
|
std::vector<std::tuple<float, float, float>> getFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator, const MACAddress nuc)
|
||||||
|
{
|
||||||
|
std::vector<std::tuple<float, float, float>> result;
|
||||||
|
|
||||||
|
for (const Offline::Entry& e : fr.getEntries())
|
||||||
|
{
|
||||||
|
if (e.type == Offline::Sensor::WIFI_FTM)
|
||||||
|
{
|
||||||
|
const Timestamp ts = Timestamp::fromMS(e.ts);
|
||||||
|
|
||||||
|
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
|
||||||
|
|
||||||
|
auto wifi = fr.getWifiFtm()[e.idx].data;
|
||||||
|
|
||||||
|
if (wifi.getAP().getMAC() == nuc)
|
||||||
|
{
|
||||||
|
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
|
||||||
|
float apDist = gtPos.getDistance(apPos);
|
||||||
|
float ftmDist = wifi.getFtmDist();
|
||||||
|
float rssi = wifi.getRSSI();
|
||||||
|
|
||||||
|
result.push_back({ apDist, ftmDist, rssi });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::pair<float, float> optimizeFtm(std::vector<std::tuple<float, float, float>>& values)
|
||||||
|
{
|
||||||
|
std::vector<std::pair<float, float>> error;
|
||||||
|
|
||||||
|
for (float offset = 0; offset < 10.0f; offset += 0.25)
|
||||||
|
{
|
||||||
|
Stats::Statistics<float> diffs;
|
||||||
|
|
||||||
|
for (const auto& data : values)
|
||||||
|
{
|
||||||
|
float apDist = std::get<0>(data);
|
||||||
|
float ftmDist = std::get<1>(data);
|
||||||
|
ftmDist += offset;
|
||||||
|
|
||||||
|
float diff = (apDist - ftmDist);
|
||||||
|
|
||||||
|
diffs.add(diff);
|
||||||
|
}
|
||||||
|
|
||||||
|
error.push_back({ offset, diffs.getSquaredSumAvg() });
|
||||||
|
}
|
||||||
|
|
||||||
|
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
|
||||||
|
return a.second < b.second;
|
||||||
|
});
|
||||||
|
|
||||||
|
std::cout << "Min ftm offset \t" << minElement->first << "\t" << minElement->second << "\n";
|
||||||
|
|
||||||
|
return *minElement;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::pair<float, float> optimizeRssi(std::vector<std::tuple<float, float, float>>& values)
|
||||||
|
{
|
||||||
|
std::vector<std::pair<float, float>> error;
|
||||||
|
|
||||||
|
for (float pathLoss = 2.0f; pathLoss < 4.0f; pathLoss += 0.125)
|
||||||
|
{
|
||||||
|
Stats::Statistics<float> diffs;
|
||||||
|
|
||||||
|
for (const auto& data : values)
|
||||||
|
{
|
||||||
|
float apDist = std::get<0>(data);
|
||||||
|
float rssi = std::get<2>(data);
|
||||||
|
float rssiDist = LogDistanceModel::rssiToDistance(-40, pathLoss, rssi);
|
||||||
|
|
||||||
|
float diff = (apDist - rssiDist);
|
||||||
|
|
||||||
|
diffs.add(diff);
|
||||||
|
}
|
||||||
|
|
||||||
|
error.push_back({ pathLoss, diffs.getSquaredSumAvg() });
|
||||||
|
}
|
||||||
|
|
||||||
|
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
|
||||||
|
return a.second < b.second;
|
||||||
|
});
|
||||||
|
|
||||||
|
std::cout << "Min path loss \t" << minElement->first << "\t" << minElement->second << "\n";
|
||||||
|
|
||||||
|
return *minElement;
|
||||||
|
}
|
||||||
|
|
||||||
|
void optimizeWifiParameters(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
|
||||||
|
{
|
||||||
|
int i = 1;
|
||||||
|
for (auto nuc : { Settings::NUC1, Settings::NUC2, Settings::NUC3, Settings::NUC4 })
|
||||||
|
{
|
||||||
|
auto values = getFtmValues(fr, gtInterpolator, nuc);
|
||||||
|
std::cout << "NUC" << i++ << "\n";
|
||||||
|
|
||||||
|
optimizeFtm(values);
|
||||||
|
optimizeRssi(values);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void exportFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
|
||||||
|
{
|
||||||
|
std::fstream fs;
|
||||||
|
fs.open("test.txt", std::fstream::out);
|
||||||
|
|
||||||
|
fs << "timestamp;nucid;dist;rssiDist;ftmDist;ftmStdDev;numMeas;numSuccesMeas" << "\n";
|
||||||
|
|
||||||
|
for (const Offline::Entry& e : fr.getEntries())
|
||||||
|
{
|
||||||
|
if (e.type == Offline::Sensor::WIFI_FTM)
|
||||||
|
{
|
||||||
|
const Timestamp ts = Timestamp::fromMS(e.ts);
|
||||||
|
|
||||||
|
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
|
||||||
|
|
||||||
|
auto wifi = fr.getWifiFtm()[e.idx].data;
|
||||||
|
|
||||||
|
int nucid = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ID;
|
||||||
|
float ftm_offset = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ftm_offset;
|
||||||
|
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).rssi_pathloss;
|
||||||
|
|
||||||
|
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
|
||||||
|
float ftmDist = wifi.getFtmDist() + ftm_offset; //in m; plus static offset
|
||||||
|
float ftmStdDev = wifi.getFtmDistStd();
|
||||||
|
int numMeas = wifi.getNumAttemptedMeasurements();
|
||||||
|
int numSuccessMeas = wifi.getNumSuccessfulMeasurements();
|
||||||
|
|
||||||
|
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
|
||||||
|
float apDist = gtPos.getDistance(apPos);
|
||||||
|
|
||||||
|
fs << ts.ms() << ";" << nucid << ";" << apDist << ";" << rssiDist << ";" << ftmDist << ";" << ftmStdDev << ";" << numMeas << ";" << numSuccessMeas << "\n";
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
fs.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
static float kalman_procNoiseDistStdDev = 1.2f; // standard deviation of distance for process noise
|
||||||
|
static float kalman_procNoiseVelStdDev = 0.1f; // standard deviation of velocity for process noise
|
||||||
|
|
||||||
static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) {
|
static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) {
|
||||||
|
|
||||||
// reading file
|
// reading file
|
||||||
@@ -69,11 +216,13 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
|
|||||||
|
|
||||||
// wifi
|
// wifi
|
||||||
auto kalmanMap = std::make_shared<std::unordered_map<MACAddress, Kalman>>();
|
auto kalmanMap = std::make_shared<std::unordered_map<MACAddress, Kalman>>();
|
||||||
kalmanMap->insert({ Settings::NUC1, Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev) });
|
kalmanMap->insert({ Settings::NUC1, Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||||
kalmanMap->insert({ Settings::NUC2, Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev) });
|
kalmanMap->insert({ Settings::NUC2, Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||||
kalmanMap->insert({ Settings::NUC3, Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev) });
|
kalmanMap->insert({ Settings::NUC3, Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||||
kalmanMap->insert({ Settings::NUC4, Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev) });
|
kalmanMap->insert({ Settings::NUC4, Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||||
|
|
||||||
|
std::cout << "Optimal wifi parameters for " << setup.training[numFile] << "\n";
|
||||||
|
optimizeWifiParameters(fr, gtInterpolator);
|
||||||
|
|
||||||
// mesh
|
// mesh
|
||||||
NM::NavMeshSettings set;
|
NM::NavMeshSettings set;
|
||||||
@@ -148,12 +297,35 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
|
|||||||
float ftm_offset = Settings::data.CurrentPath.NUCs.at(ftm.getAP().getMAC()).ftm_offset;
|
float ftm_offset = Settings::data.CurrentPath.NUCs.at(ftm.getAP().getMAC()).ftm_offset;
|
||||||
float ftmDist = ftm.getFtmDist() + ftm_offset; // in m; plus static offset
|
float ftmDist = ftm.getFtmDist() + ftm_offset; // in m; plus static offset
|
||||||
|
|
||||||
|
|
||||||
|
if (Settings::UseKalman)
|
||||||
|
{
|
||||||
auto& kalman = kalmanMap->at(ftm.getAP().getMAC());
|
auto& kalman = kalmanMap->at(ftm.getAP().getMAC());
|
||||||
float predictDist = kalman.predict(ts, ftmDist);
|
float predictDist = kalman.predict(ts, ftmDist);
|
||||||
|
|
||||||
ftm.setFtmDist(predictDist);
|
ftm.setFtmDist(predictDist);
|
||||||
|
|
||||||
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm);
|
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// MOV AVG
|
||||||
|
if (obs.wifi.count(ftm.getAP().getMAC()) == 0)
|
||||||
|
{
|
||||||
|
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
auto currFtm = obs.wifi.find(ftm.getAP().getMAC());
|
||||||
|
|
||||||
|
float currDist = currFtm->second.getFtmDist();
|
||||||
|
|
||||||
|
const float alpha = 0.6;
|
||||||
|
float newDist = alpha * currDist + (1 - alpha) * ftmDist;
|
||||||
|
|
||||||
|
currFtm->second.setFtmDist(newDist);
|
||||||
|
}
|
||||||
|
}
|
||||||
} else if (e.type == Offline::Sensor::WIFI) {
|
} else if (e.type == Offline::Sensor::WIFI) {
|
||||||
//obs.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
|
//obs.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
|
||||||
//ctrl.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
|
//ctrl.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
|
||||||
@@ -256,7 +428,6 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// get someting on console
|
// get someting on console
|
||||||
std::cout << "Statistical Analysis Filtering: " << std::endl;
|
std::cout << "Statistical Analysis Filtering: " << std::endl;
|
||||||
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl;
|
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl;
|
||||||
@@ -275,8 +446,8 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
|
|||||||
|
|
||||||
int main(int argc, char** argv)
|
int main(int argc, char** argv)
|
||||||
{
|
{
|
||||||
mainFtm(argc, argv);
|
//mainFtm(argc, argv);
|
||||||
return 0;
|
//return 0;
|
||||||
|
|
||||||
|
|
||||||
Stats::Statistics<float> statsAVG;
|
Stats::Statistics<float> statsAVG;
|
||||||
@@ -287,6 +458,15 @@ int main(int argc, char** argv)
|
|||||||
|
|
||||||
std::string evaluationName = "prologic/tmp";
|
std::string evaluationName = "prologic/tmp";
|
||||||
|
|
||||||
|
std::vector<std::array<float, 3>> error;
|
||||||
|
std::ofstream error_out;
|
||||||
|
error_out.open(Settings::errorDir + evaluationName + "_error_path1" + ".csv", std::ios_base::app);
|
||||||
|
|
||||||
|
|
||||||
|
//for (kalman_procNoiseDistStdDev = 0.8f; kalman_procNoiseDistStdDev < 1.5f; kalman_procNoiseDistStdDev += 0.1f)
|
||||||
|
//{
|
||||||
|
// for (kalman_procNoiseVelStdDev = 0.1f; kalman_procNoiseVelStdDev < 0.5f; kalman_procNoiseVelStdDev += 0.1f)
|
||||||
|
// {
|
||||||
for (int i = 0; i < 2; ++i) {
|
for (int i = 0; i < 2; ++i) {
|
||||||
|
|
||||||
tmp = run(Settings::data.CurrentPath, 0, evaluationName);
|
tmp = run(Settings::data.CurrentPath, 0, evaluationName);
|
||||||
@@ -295,9 +475,49 @@ int main(int argc, char** argv)
|
|||||||
statsSTD.add(tmp.getStdDev());
|
statsSTD.add(tmp.getStdDev());
|
||||||
statsQuantil.add(tmp.getQuantile(0.75));
|
statsQuantil.add(tmp.getQuantile(0.75));
|
||||||
|
|
||||||
|
std::cout << kalman_procNoiseDistStdDev << " " << kalman_procNoiseVelStdDev << std::endl;
|
||||||
std::cout << "Iteration " << i << " completed" << std::endl;
|
std::cout << "Iteration " << i << " completed" << std::endl;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// error.push_back({{ kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev, statsAVG.getAvg() }});
|
||||||
|
|
||||||
|
// auto minElement = std::min_element(error.begin(), error.end(), [](std::array<float, 3> a, std::array<float, 3> b) {
|
||||||
|
// return a[2] < b[2];
|
||||||
|
// });
|
||||||
|
|
||||||
|
// std::cout << "Current min error " << (*minElement)[2] << "\t Q(0)=\t" << (*minElement)[0] << "\t Q(1)=" << (*minElement)[1] << "\n";
|
||||||
|
|
||||||
|
// error_out << kalman_procNoiseDistStdDev << ";" << kalman_procNoiseVelStdDev << ";" << statsAVG.getAvg() << std::endl;
|
||||||
|
|
||||||
|
// // reset stats
|
||||||
|
// statsAVG.reset();
|
||||||
|
// statsMedian.reset();
|
||||||
|
// statsSTD.reset();
|
||||||
|
// statsQuantil.reset();
|
||||||
|
// }
|
||||||
|
//}
|
||||||
|
|
||||||
|
//auto minElement = std::min_element(error.begin(), error.end(), [](std::array<float, 3> a, std::array<float, 3> b) {
|
||||||
|
// return a[2] < b[2];
|
||||||
|
//});
|
||||||
|
|
||||||
|
//std::cout << "Global Min error " << (*minElement)[2] << "\t Q(0)=\t" << (*minElement)[0] << "\t Q(1)=" << (*minElement)[1] << "\n";
|
||||||
|
|
||||||
|
//error_out.close();
|
||||||
|
|
||||||
|
|
||||||
|
//for(int i = 0; i < 2; ++i){
|
||||||
|
//
|
||||||
|
// tmp = run(Settings::data.CurrentPath, 0, evaluationName);
|
||||||
|
// statsMedian.add(tmp.getMedian());
|
||||||
|
// statsAVG.add(tmp.getAvg());
|
||||||
|
// statsSTD.add(tmp.getStdDev());
|
||||||
|
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||||
|
|
||||||
|
// std::cout << "Iteration " << i << " completed" << std::endl;
|
||||||
|
//}
|
||||||
|
|
||||||
std::cout << "==========================================================" << std::endl;
|
std::cout << "==========================================================" << std::endl;
|
||||||
std::cout << "Average of all statistical data: " << std::endl;
|
std::cout << "Average of all statistical data: " << std::endl;
|
||||||
std::cout << "Median: " << statsMedian.getAvg() << std::endl;
|
std::cout << "Median: " << statsMedian.getAvg() << std::endl;
|
||||||
|
|||||||
150
code/mainFtm.cpp
150
code/mainFtm.cpp
@@ -29,150 +29,6 @@
|
|||||||
|
|
||||||
#include <sys/stat.h>
|
#include <sys/stat.h>
|
||||||
|
|
||||||
using namespace std::chrono_literals;
|
|
||||||
|
|
||||||
std::vector<std::tuple<float, float, float>> getFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator, const MACAddress nuc)
|
|
||||||
{
|
|
||||||
std::vector<std::tuple<float, float, float>> result;
|
|
||||||
|
|
||||||
for (const Offline::Entry& e : fr.getEntries())
|
|
||||||
{
|
|
||||||
if (e.type == Offline::Sensor::WIFI_FTM)
|
|
||||||
{
|
|
||||||
const Timestamp ts = Timestamp::fromMS(e.ts);
|
|
||||||
|
|
||||||
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
|
|
||||||
|
|
||||||
auto wifi = fr.getWifiFtm()[e.idx].data;
|
|
||||||
|
|
||||||
if (wifi.getAP().getMAC() == nuc)
|
|
||||||
{
|
|
||||||
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
|
|
||||||
float apDist = gtPos.getDistance(apPos);
|
|
||||||
float ftmDist = wifi.getFtmDist();
|
|
||||||
float rssi = wifi.getRSSI();
|
|
||||||
|
|
||||||
result.push_back({ apDist, ftmDist, rssi });
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::pair<float, float> optimizeFtm(std::vector<std::tuple<float, float, float>>& values)
|
|
||||||
{
|
|
||||||
std::vector<std::pair<float, float>> error;
|
|
||||||
|
|
||||||
for (float offset = 0; offset < 10.0f; offset += 0.25)
|
|
||||||
{
|
|
||||||
Stats::Statistics<float> diffs;
|
|
||||||
|
|
||||||
for (const auto& data : values)
|
|
||||||
{
|
|
||||||
float apDist = std::get<0>(data);
|
|
||||||
float ftmDist = std::get<1>(data);
|
|
||||||
ftmDist += offset;
|
|
||||||
|
|
||||||
float diff = (apDist - ftmDist);
|
|
||||||
|
|
||||||
diffs.add(diff);
|
|
||||||
}
|
|
||||||
|
|
||||||
error.push_back({ offset, diffs.getSquaredSumAvg() });
|
|
||||||
}
|
|
||||||
|
|
||||||
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
|
|
||||||
return a.second < b.second;
|
|
||||||
});
|
|
||||||
|
|
||||||
std::cout << "Min ftm offset \t" << minElement->first << "\t" << minElement->second << "\n";
|
|
||||||
|
|
||||||
return *minElement;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::pair<float, float> optimizeRssi(std::vector<std::tuple<float, float, float>>& values)
|
|
||||||
{
|
|
||||||
std::vector<std::pair<float, float>> error;
|
|
||||||
|
|
||||||
for (float pathLoss = 2.0f; pathLoss < 4.0f; pathLoss += 0.125)
|
|
||||||
{
|
|
||||||
Stats::Statistics<float> diffs;
|
|
||||||
|
|
||||||
for (const auto& data : values)
|
|
||||||
{
|
|
||||||
float apDist = std::get<0>(data);
|
|
||||||
float rssi = std::get<2>(data);
|
|
||||||
float rssiDist = LogDistanceModel::rssiToDistance(-40, pathLoss, rssi);
|
|
||||||
|
|
||||||
float diff = (apDist - rssiDist);
|
|
||||||
|
|
||||||
diffs.add(diff);
|
|
||||||
}
|
|
||||||
|
|
||||||
error.push_back({ pathLoss, diffs.getSquaredSumAvg() });
|
|
||||||
}
|
|
||||||
|
|
||||||
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
|
|
||||||
return a.second < b.second;
|
|
||||||
});
|
|
||||||
|
|
||||||
std::cout << "Min path loss \t" << minElement->first << "\t" << minElement->second << "\n";
|
|
||||||
|
|
||||||
return *minElement;
|
|
||||||
}
|
|
||||||
|
|
||||||
void optimize(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
|
|
||||||
{
|
|
||||||
int i = 1;
|
|
||||||
for (auto nuc : {Settings::NUC1, Settings::NUC2, Settings::NUC3, Settings::NUC4})
|
|
||||||
{
|
|
||||||
auto values = getFtmValues(fr, gtInterpolator, nuc);
|
|
||||||
std::cout << "NUC" << i++ << "\n";
|
|
||||||
|
|
||||||
optimizeFtm(values);
|
|
||||||
optimizeRssi(values);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void exportFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
|
|
||||||
{
|
|
||||||
std::fstream fs;
|
|
||||||
fs.open("test.txt", std::fstream::out);
|
|
||||||
|
|
||||||
fs << "timestamp;nucid;dist;rssiDist;ftmDist;ftmStdDev;numMeas;numSuccesMeas" << "\n";
|
|
||||||
|
|
||||||
for (const Offline::Entry& e : fr.getEntries())
|
|
||||||
{
|
|
||||||
if (e.type == Offline::Sensor::WIFI_FTM)
|
|
||||||
{
|
|
||||||
const Timestamp ts = Timestamp::fromMS(e.ts);
|
|
||||||
|
|
||||||
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
|
|
||||||
|
|
||||||
auto wifi = fr.getWifiFtm()[e.idx].data;
|
|
||||||
|
|
||||||
int nucid = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ID;
|
|
||||||
float ftm_offset = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ftm_offset;
|
|
||||||
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).rssi_pathloss;
|
|
||||||
|
|
||||||
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
|
|
||||||
float ftmDist = wifi.getFtmDist() + ftm_offset; //in m; plus static offset
|
|
||||||
float ftmStdDev = wifi.getFtmDistStd();
|
|
||||||
int numMeas = wifi.getNumAttemptedMeasurements();
|
|
||||||
int numSuccessMeas = wifi.getNumSuccessfulMeasurements();
|
|
||||||
|
|
||||||
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
|
|
||||||
float apDist = gtPos.getDistance(apPos);
|
|
||||||
|
|
||||||
fs << ts.ms() << ";" << nucid << ";" << apDist << ";" << rssiDist << ";" << ftmDist << ";" << ftmStdDev << ";" << numMeas << ";" << numSuccessMeas << "\n";
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
fs.close();
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) {
|
static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) {
|
||||||
|
|
||||||
// reading file
|
// reading file
|
||||||
@@ -276,12 +132,6 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
|
|||||||
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
|
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
|
||||||
Timestamp lastTimestamp = Timestamp::fromMS(0);
|
Timestamp lastTimestamp = Timestamp::fromMS(0);
|
||||||
|
|
||||||
//optimize(fr, gtInterpolator);
|
|
||||||
//return errorStats;
|
|
||||||
|
|
||||||
int i = 0;
|
|
||||||
//exportFtmValues(fr, gtInterpolator);
|
|
||||||
|
|
||||||
|
|
||||||
// parse each sensor-value within the offline data
|
// parse each sensor-value within the offline data
|
||||||
for (const Offline::Entry& e : fr.getEntries()) {
|
for (const Offline::Entry& e : fr.getEntries()) {
|
||||||
|
|||||||
Reference in New Issue
Block a user