Particle reduced to ftm eval only
This commit is contained in:
@@ -95,7 +95,7 @@ namespace Settings {
|
||||
const std::string dataDir = "../measurements/data/";
|
||||
const std::string errorDir = "../measurements/error/";
|
||||
|
||||
const bool UseKalman = false;
|
||||
const bool UseKalman = true;
|
||||
|
||||
/** describes one dataset (map, training, parameter-estimation, ...) */
|
||||
|
||||
@@ -269,7 +269,79 @@ namespace Settings {
|
||||
{ 0, 1, 2, 11, 10, 9, 10, 11, 2, 6, 5, 12, 13, 12, 5, 6, 7, 8 }
|
||||
};
|
||||
|
||||
const DataSetup CurrentPath = Path5;
|
||||
|
||||
// 6 Path: SHL Path 1
|
||||
const DataSetup Path6 = {
|
||||
mapDir + "shl.xml",
|
||||
{
|
||||
dataDir + "Pixel2/path6/14681054221905_6_1.csv"
|
||||
},
|
||||
{
|
||||
// NUC, ID Pos X Y Z offset loss kalman stddev
|
||||
{ NUC1, {1, { 54, 46, 0.8}, 5.00, 3.375, 3.0f} }, // NUC 1
|
||||
{ NUC2, {2, { 45, 37, 0.8}, 5.00, 3.375, 3.0f} }, // NUC 2
|
||||
{ NUC3, {3, { 27, 45, 0.8}, 5.00, 3.250, 3.0f} }, // NUC 3
|
||||
{ NUC4, {4, { 16, 36, 0.8}, 5.75, 3.375, 3.0f} }, // NUC 4
|
||||
},
|
||||
{ 100, 101, 102, 103, 104, 103, 102, 101, 100 }
|
||||
};
|
||||
|
||||
// 7 Path: SHL Path 2; Versuche mit NUCs in den Räumen war nicht vielversprechend ...
|
||||
const DataSetup Path7 = {
|
||||
mapDir + "shl.xml",
|
||||
{
|
||||
dataDir + "Pixel2/path7/23388354821394.csv",
|
||||
dataDir + "Pixel2/path7/23569363647863.csv",
|
||||
dataDir + "Pixel2/path7/23776390928852.csv",
|
||||
dataDir + "Pixel2/path7/23938602403553.csv"
|
||||
},
|
||||
{
|
||||
// NUC, ID Pos X Y Z offset loss kalman stddev
|
||||
{ NUC1, {1, { 54, 46, 0.8}, 5.00, 3.375, 3.0f} }, // NUC 1
|
||||
{ NUC2, {2, { 45, 37, 0.8}, 5.00, 3.375, 3.0f} }, // NUC 2
|
||||
{ NUC3, {3, { 27, 45, 0.8}, 5.00, 3.250, 3.0f} }, // NUC 3
|
||||
{ NUC4, {4, { 16, 36, 0.8}, 5.75, 3.375, 3.0f} }, // NUC 4
|
||||
},
|
||||
{ 100, 102, 103, 104, 105, 104, 103, 102, 100 }
|
||||
};
|
||||
|
||||
// 8 Path: Wie SHL Path 2 nur, dass die NUCs im Gang stehen
|
||||
const DataSetup Path8 = {
|
||||
mapDir + "shl.xml",
|
||||
{
|
||||
dataDir + "Pixel2/path8/25967118530318.csv", // gang
|
||||
dataDir + "Pixel2/path8/25439520303384.csv", // tür
|
||||
},
|
||||
{
|
||||
// NUC, ID Pos X Y Z offset loss kalman stddev
|
||||
{ NUC1, {1, { 55, 44, 0.8}, 0.00, 2.500, 3.0f} }, // NUC 1
|
||||
{ NUC2, {2, { 46, 40, 0.8}, 0.00, 2.500, 3.0f} }, // NUC 2
|
||||
{ NUC3, {3, { 27, 44, 0.8}, 0.00, 2.500, 3.0f} }, // NUC 3
|
||||
{ NUC4, {4, { 15, 40, 0.8}, 0.00, 2.500, 3.0f} }, // NUC 4
|
||||
},
|
||||
{ 100, 102, 103, 104, 105, 104, 103, 102, 100 }
|
||||
};
|
||||
|
||||
// 9 Path: SHL Path 3, NUCs stehen im Gang
|
||||
const DataSetup Path9 = {
|
||||
mapDir + "shl_nuc_gang.xml",
|
||||
{
|
||||
dataDir + "Pixel2/path9/27911186920065.csv",
|
||||
dataDir + "Pixel2/path9/28255150484121.csv",
|
||||
dataDir + "Pixel2/path9/28404719230167.csv",
|
||||
},
|
||||
{
|
||||
// NUC, ID Pos X Y Z offset loss kalman stddev
|
||||
{ NUC1, {1, { 55, 44, 0.8}, 0.00, 2.500, 3.0f} }, // NUC 1
|
||||
{ NUC2, {2, { 46, 40, 0.8}, 0.00, 2.500, 3.0f} }, // NUC 2
|
||||
{ NUC3, {3, { 27, 44, 0.8}, 0.00, 2.500, 3.0f} }, // NUC 3
|
||||
{ NUC4, {4, { 15, 40, 0.8}, 0.00, 2.500, 3.0f} }, // NUC 4
|
||||
},
|
||||
{ 200, 201, 203, 104, 204, 205, 206, 207, 206, 208, 209, 210, 211, 212 }
|
||||
};
|
||||
|
||||
|
||||
const DataSetup CurrentPath = Path8;
|
||||
|
||||
} data;
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include "mesh.h"
|
||||
#include "Settings.h"
|
||||
#include <omp.h>
|
||||
#include <array>
|
||||
|
||||
#include <Indoor/geo/Heading.h>
|
||||
#include <Indoor/math/distribution/Uniform.h>
|
||||
@@ -111,19 +112,13 @@ struct MyControl {
|
||||
|
||||
struct MyObservation {
|
||||
|
||||
// pressure
|
||||
float sigmaPressure = 0.10f;
|
||||
float relativePressure = 0;
|
||||
|
||||
//wifi
|
||||
std::unordered_map<MACAddress, WiFiMeasurement> wifi;
|
||||
std::unordered_map<MACAddress, WiFiMeasurement> wifi; // deprecated
|
||||
std::array<float, 4> dists;
|
||||
std::array<float, 4> sigmas; // from kalman
|
||||
|
||||
//time
|
||||
Timestamp currentTime;
|
||||
|
||||
//activity
|
||||
Activity activity;
|
||||
|
||||
};
|
||||
|
||||
class MyPFInitUniform : public SMC::ParticleFilterInitializer<MyState> {
|
||||
@@ -260,44 +255,15 @@ public:
|
||||
//control->afterEval();
|
||||
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
class MyPFEval : public SMC::ParticleFilterEvaluation<MyState, MyObservation> {
|
||||
|
||||
//TODO: add this to transition probability
|
||||
double getStairProb(const SMC::Particle<MyState>& p, const Activity act) {
|
||||
|
||||
const float kappa = 0.75;
|
||||
|
||||
switch (act) {
|
||||
|
||||
case Activity::WALKING:
|
||||
if (p.state.pos.tria->getType() == (int) NM::NavMeshType::FLOOR_INDOOR) {return kappa;}
|
||||
if (p.state.pos.tria->getType() == (int) NM::NavMeshType::DOOR) {return kappa;}
|
||||
if (p.state.pos.tria->getType() == (int) NM::NavMeshType::STAIR_LEVELED) {return kappa;}
|
||||
{return 1-kappa;}
|
||||
|
||||
case Activity::WALKING_UP:
|
||||
case Activity::WALKING_DOWN:
|
||||
if (p.state.pos.tria->getType() == (int) NM::NavMeshType::STAIR_SKEWED) {return kappa;}
|
||||
if (p.state.pos.tria->getType() == (int) NM::NavMeshType::STAIR_LEVELED) {return kappa;}
|
||||
if (p.state.pos.tria->getType() == (int) NM::NavMeshType::ELEVATOR) {return kappa;}
|
||||
{return 1-kappa;}
|
||||
}
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
public:
|
||||
struct MyPFEval : public SMC::ParticleFilterEvaluation<MyState, MyObservation> {
|
||||
|
||||
// FRANK
|
||||
MyPFEval() { };
|
||||
|
||||
bool assignProps = false;
|
||||
|
||||
std::shared_ptr<std::unordered_map<MACAddress, Kalman>> kalmanMap;
|
||||
|
||||
virtual double evaluation(std::vector<SMC::Particle<MyState>>& particles, const MyObservation& observation) override {
|
||||
|
||||
double sum = 0;
|
||||
@@ -308,47 +274,27 @@ public:
|
||||
|
||||
double pFtm = 1.0;
|
||||
|
||||
if (observation.wifi.size() == 0)
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
{
|
||||
printf("");
|
||||
}
|
||||
float dist = observation.dists[i];
|
||||
const float sigma = isnan(observation.sigmas[i]) ? 3.5 : observation.sigmas[i];
|
||||
|
||||
for (auto& wifi : observation.wifi) {
|
||||
|
||||
if ( (true && wifi.second.getAP().getMAC() == Settings::NUC1)
|
||||
|| (true && wifi.second.getAP().getMAC() == Settings::NUC2)
|
||||
|| (true && wifi.second.getAP().getMAC() == Settings::NUC3)
|
||||
|| (true && wifi.second.getAP().getMAC() == Settings::NUC4)
|
||||
)
|
||||
if (!isnan(dist))
|
||||
{
|
||||
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(wifi.second.getAP().getMAC()).rssi_pathloss;
|
||||
|
||||
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.second.getRSSI());
|
||||
float ftmDist = wifi.second.getFtmDist();
|
||||
|
||||
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.first)->second.position;
|
||||
Point3 apPos = Settings::data.CurrentPath.nucInfo(i).position;
|
||||
Point3 particlePos = p.state.pos.pos;
|
||||
particlePos.z = 1.3; // smartphone höhe
|
||||
float apDist = particlePos.getDistance(apPos);
|
||||
|
||||
if (Settings::UseKalman)
|
||||
{
|
||||
auto kalman = kalmanMap->at(wifi.second.getAP().getMAC());
|
||||
pFtm *= Distribution::Normal<float>::getProbability(ftmDist, std::sqrt(kalman.P(0,0)), apDist);
|
||||
}
|
||||
else
|
||||
{
|
||||
pFtm *= Distribution::Normal<float>::getProbability(apDist, 3.5, ftmDist);
|
||||
//pFtm *= Distribution::Region<float>::getProbability(apDist, 3.5/2, ftmDist);
|
||||
}
|
||||
}
|
||||
double x = Distribution::Normal<double>::getProbability(dist, std::sqrt(sigma), apDist);
|
||||
pFtm *= x;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double prob = pFtm;
|
||||
|
||||
if (assignProps)
|
||||
p.weight = prob; // p.weight *= prob
|
||||
p.weight = prob;
|
||||
else
|
||||
p.weight *= prob;
|
||||
|
||||
@@ -357,9 +303,7 @@ public:
|
||||
}
|
||||
|
||||
return sum;
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
352
code/main.cpp
352
code/main.cpp
@@ -180,7 +180,7 @@ void exportFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gt
|
||||
static float kalman_procNoiseDistStdDev = 1.2f; // standard deviation of distance for process noise
|
||||
static float kalman_procNoiseVelStdDev = 0.1f; // standard deviation of velocity for process noise
|
||||
|
||||
static Stats::Statistics<float> run(Settings::DataSetup setup, int walkIdx, std::string folder) {
|
||||
static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::string folder) {
|
||||
|
||||
// reading file
|
||||
std::string currDir = std::filesystem::current_path().string();
|
||||
@@ -191,7 +191,7 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int walkIdx, std:
|
||||
// ground truth
|
||||
std::vector<int> gtPath = setup.gtPath;
|
||||
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
|
||||
Stats::Statistics<float> errorStats;
|
||||
CombinedStats<float> errorStats;
|
||||
|
||||
//calculate distance of path
|
||||
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
|
||||
@@ -216,11 +216,12 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int walkIdx, std:
|
||||
|
||||
|
||||
// wifi
|
||||
auto kalmanMap = std::make_shared<std::unordered_map<MACAddress, Kalman>>();
|
||||
kalmanMap->insert({ Settings::NUC1, Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||
kalmanMap->insert({ Settings::NUC2, Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||
kalmanMap->insert({ Settings::NUC3, Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||
kalmanMap->insert({ Settings::NUC4, Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||
std::array<Kalman, 4> ftmKalmanFilters{
|
||||
Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
|
||||
Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
|
||||
Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
|
||||
Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev)
|
||||
};
|
||||
|
||||
std::cout << "Optimal wifi parameters for " << setup.training[walkIdx] << "\n";
|
||||
optimizeWifiParameters(fr, gtInterpolator);
|
||||
@@ -232,13 +233,6 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int walkIdx, std:
|
||||
MyNavMeshFactory fac(&mesh, set);
|
||||
fac.build(map);
|
||||
|
||||
const Point3 srcPath0(9.8, 24.9, 0); // fixed start pos
|
||||
|
||||
// add shortest-path to destination
|
||||
//const Point3 dst(51, 45, 1.7);
|
||||
//const Point3 dst(25, 45, 0);
|
||||
//NM::NavMeshDijkstra::stamp<MyNavMeshTriangle>(mesh, dst);
|
||||
|
||||
// debug show
|
||||
//MeshPlotter dbg;
|
||||
//dbg.addFloors(map);
|
||||
@@ -263,7 +257,6 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int walkIdx, std:
|
||||
//auto init = std::make_unique<MyPFInitFixed>(&mesh, srcPath0); // known position
|
||||
auto init = std::make_unique<MyPFInitUniform>(&mesh); // uniform distribution
|
||||
auto eval = std::make_unique<MyPFEval>();
|
||||
eval->kalmanMap = kalmanMap;
|
||||
|
||||
auto trans = std::make_unique<MyPFTransRandom>();
|
||||
//auto trans = std::make_unique<MyPFTransStatic>();
|
||||
@@ -283,172 +276,99 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int walkIdx, std:
|
||||
MyControl ctrl;
|
||||
MyObservation obs;
|
||||
|
||||
StepDetection sd;
|
||||
PoseDetection pd;
|
||||
TurnDetection td(&pd);
|
||||
RelativePressure relBaro;
|
||||
ActivityDetector act;
|
||||
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
|
||||
Timestamp lastTimestamp = Timestamp::fromMS(0);
|
||||
|
||||
int i = 0;
|
||||
// parse each sensor-value within the offline data
|
||||
for (const Offline::Entry& e : fr.getEntries()) {
|
||||
std::vector<WifiMeas> data = filterOfflineData(fr);
|
||||
|
||||
const Timestamp ts = Timestamp::fromMS(e.ts);
|
||||
std::vector<float> errorValuesFtm, errorValuesRssi;
|
||||
std::vector<int> timestamps;
|
||||
|
||||
if (e.type == Offline::Sensor::WIFI_FTM) {
|
||||
auto ftm = fr.getWifiFtm()[e.idx].data;
|
||||
|
||||
float ftm_offset = Settings::data.CurrentPath.NUCs.at(ftm.getAP().getMAC()).ftm_offset;
|
||||
float ftmDist = ftm.getFtmDist() + ftm_offset; // in m; plus static offset
|
||||
for (const WifiMeas& wifi : data)
|
||||
{
|
||||
Point2 gtPos = gtInterpolator.get(static_cast<uint64_t>(wifi.ts.ms())).xy();
|
||||
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
|
||||
|
||||
Point3 estPos;
|
||||
float distErrorFtm = 0;
|
||||
float distErrorRssi = 0;
|
||||
|
||||
// FTM
|
||||
{
|
||||
std::array<float, 4> dists = wifi.ftmDists;
|
||||
std::array<float, 4> sigmas = {NAN, NAN, NAN, NAN };
|
||||
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
{
|
||||
if (dists[i] <= 0)
|
||||
{
|
||||
dists[i] = NAN;
|
||||
}
|
||||
}
|
||||
|
||||
if (Settings::UseKalman)
|
||||
{
|
||||
auto& kalman = kalmanMap->at(ftm.getAP().getMAC());
|
||||
float predictDist = kalman.predict(ts, ftmDist);
|
||||
|
||||
ftm.setFtmDist(predictDist);
|
||||
|
||||
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm);
|
||||
}
|
||||
else
|
||||
{
|
||||
// MOV AVG
|
||||
if (obs.wifi.count(ftm.getAP().getMAC()) == 0)
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
{
|
||||
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm);
|
||||
}
|
||||
else
|
||||
{
|
||||
auto currFtm = obs.wifi.find(ftm.getAP().getMAC());
|
||||
|
||||
float currDist = currFtm->second.getFtmDist();
|
||||
|
||||
const float alpha = 0.6;
|
||||
float newDist = alpha * currDist + (1 - alpha) * ftmDist;
|
||||
|
||||
currFtm->second.setFtmDist(newDist);
|
||||
if (!isnan(dists[i]))
|
||||
{
|
||||
dists[i] = ftmKalmanFilters[i].predict(wifi.ts, dists[i]);
|
||||
sigmas[i] = ftmKalmanFilters[i].P(0, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (e.type == Offline::Sensor::WIFI) {
|
||||
//obs.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
|
||||
//ctrl.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
|
||||
} else if (e.type == Offline::Sensor::ACC) {
|
||||
if (sd.add(ts, fr.getAccelerometer()[e.idx].data)) {
|
||||
++ctrl.numStepsSinceLastEval;
|
||||
}
|
||||
const Offline::TS<AccelerometerData>& _acc = fr.getAccelerometer()[e.idx];
|
||||
pd.addAccelerometer(ts, _acc.data);
|
||||
|
||||
obs.dists = dists;
|
||||
obs.sigmas = sigmas;
|
||||
|
||||
//simpleActivity walking / standing
|
||||
act.add(ts, fr.getAccelerometer()[e.idx].data);
|
||||
// Run PF
|
||||
obs.currentTime = wifi.ts;
|
||||
ctrl.currentTime = wifi.ts;
|
||||
|
||||
} else if (e.type == Offline::Sensor::GYRO) {
|
||||
const Offline::TS<GyroscopeData>& _gyr = fr.getGyroscope()[e.idx];
|
||||
const float delta_gyro = td.addGyroscope(ts, _gyr.data);
|
||||
|
||||
ctrl.headingChangeSinceLastEval += delta_gyro;
|
||||
|
||||
} else if (e.type == Offline::Sensor::BARO) {
|
||||
relBaro.add(ts, fr.getBarometer()[e.idx].data);
|
||||
obs.relativePressure = relBaro.getPressureRealtiveToStart();
|
||||
obs.sigmaPressure = relBaro.getSigma();
|
||||
|
||||
//simpleActivity stairs up / down
|
||||
act.add(ts, fr.getBarometer()[e.idx].data);
|
||||
obs.activity = act.get();
|
||||
}
|
||||
|
||||
if (ctrl.numStepsSinceLastEval > 0)
|
||||
//if (ts - lastTimestamp >= Timestamp::fromMS(500))
|
||||
//if (obs.wifi.size() == 4)
|
||||
{
|
||||
|
||||
obs.currentTime = ts;
|
||||
ctrl.currentTime = ts;
|
||||
|
||||
// if(ctrl.numStepsSinceLastEval > 0){
|
||||
// pf.updateTransitionOnly(&ctrl);
|
||||
// }
|
||||
MyState est = pf.update(&ctrl, obs); //pf.updateEvaluationOnly(obs);
|
||||
MyState est = pf.update(&ctrl, obs);
|
||||
ctrl.afterEval();
|
||||
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0,0,0.1);
|
||||
lastTimestamp = ts;
|
||||
lastTimestamp = wifi.ts;
|
||||
|
||||
ctrl.lastEstimate = est.pos.pos;
|
||||
estPos = est.pos.pos;
|
||||
|
||||
ctrl.lastEstimate = estPos;
|
||||
|
||||
plot.setCurEst(Point3(estPos.x, estPos.y, 0.1));
|
||||
plot.addEstimationNode(Point3(estPos.x, estPos.y, 0.1));
|
||||
|
||||
// Error
|
||||
distErrorFtm = gtPos.getDistance(estPos.xy());
|
||||
errorStats.ftm.add(distErrorFtm);
|
||||
|
||||
// draw wifi ranges
|
||||
for (auto& ftm : obs.wifi)
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
{
|
||||
int nucid = Settings::data.CurrentPath.NUCs.at(ftm.second.getAP().getMAC()).ID;
|
||||
|
||||
if (nucid == 1)
|
||||
{
|
||||
Point3 apPos = Settings::data.CurrentPath.NUCs.find(ftm.first)->second.position;
|
||||
//plot.addCircle(nucid, apPos.xy(), ftm.second.getFtmDist());
|
||||
}
|
||||
Point3 apPos = Settings::data.CurrentPath.nucInfo(i).position;
|
||||
plot.addCircle(1000+i, apPos.xy(), dists[i]);
|
||||
}
|
||||
|
||||
obs.wifi.clear();
|
||||
|
||||
//plot
|
||||
//dbg.showParticles(pf.getParticles());
|
||||
//dbg.setCurPos(est.pos.pos);
|
||||
//dbg.setGT(gtPos);
|
||||
//dbg.addEstimationNode(est.pos.pos);
|
||||
//dbg.addGroundTruthNode(gtPos);
|
||||
//dbg.setTimeInMinute(static_cast<int>(ts.sec()) / 60, static_cast<int>(static_cast<int>(ts.sec())%60));
|
||||
//dbg.draw();
|
||||
|
||||
//plot.printOverview("test");
|
||||
|
||||
plot.showParticles(pf.getParticles());
|
||||
plot.setCurEst(est.pos.pos);
|
||||
plot.setGroundTruth(gtPos);
|
||||
|
||||
plot.addEstimationNode(est.pos.pos);
|
||||
plot.setActivity((int) act.get());
|
||||
//plot.splot.getView().setEnabled(false);
|
||||
//plot.splot.getView().setCamera(0, 0);
|
||||
//plot.splot.getView().setEqualXY(true);
|
||||
|
||||
// plot.plot();
|
||||
|
||||
plot.plot();
|
||||
//plot.closeStream();
|
||||
std::this_thread::sleep_for(100ms);
|
||||
|
||||
// error calc
|
||||
// float err_m = gtPos.getDistance(est.pos.pos);
|
||||
// errorStats.add(err_m);
|
||||
// errorFile << ts.ms() << " " << err_m << "\n";
|
||||
|
||||
//error calc with penalty for wrong floor
|
||||
double errorFactor = 3.0;
|
||||
Point3 gtPosError = Point3(gtPos.x, gtPos.y, errorFactor * gtPos.z);
|
||||
Point3 estError = Point3(est.pos.pos.x, est.pos.pos.y, errorFactor * est.pos.pos.z);
|
||||
float err_m = gtPosError.getDistance(estError);
|
||||
errorStats.add(err_m);
|
||||
errorFile << ts.ms() << " " << err_m << "\n";
|
||||
}
|
||||
|
||||
errorValuesFtm.push_back(distErrorFtm);
|
||||
errorValuesRssi.push_back(distErrorRssi);
|
||||
timestamps.push_back(wifi.ts.ms());
|
||||
|
||||
// Plotting
|
||||
//plot.showParticles(pf.getParticles());
|
||||
plot.setCurEst(estPos);
|
||||
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
|
||||
|
||||
plot.addEstimationNode(estPos);
|
||||
//plot.setActivity((int)act.get());
|
||||
//plot.splot.getView().setEnabled(false);
|
||||
//plot.splot.getView().setCamera(0, 0);
|
||||
//plot.splot.getView().setEqualXY(true);
|
||||
|
||||
plot.plot();
|
||||
//std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
}
|
||||
|
||||
|
||||
// get someting on console
|
||||
std::cout << "Statistical Analysis Filtering: " << std::endl;
|
||||
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl;
|
||||
|
||||
// save the statistical data in file
|
||||
errorFile << "========================================================== \n";
|
||||
errorFile << "Average of all statistical data: \n";
|
||||
errorFile << "Median: " << errorStats.getMedian() << "\n";
|
||||
errorFile << "Average: " << errorStats.getAvg() << "\n";
|
||||
errorFile << "Standard Deviation: " << errorStats.getStdDev() << "\n";
|
||||
errorFile << "75 Quantil: " << errorStats.getQuantile(0.75) << "\n";
|
||||
errorFile.close();
|
||||
printErrorStats(errorStats);
|
||||
|
||||
return errorStats;
|
||||
}
|
||||
@@ -470,18 +390,58 @@ int main(int argc, char** argv)
|
||||
|
||||
//mainFtm(argc, argv);
|
||||
//return 0;
|
||||
|
||||
Stats::Statistics<float> statsAVG;
|
||||
Stats::Statistics<float> statsMedian;
|
||||
Stats::Statistics<float> statsSTD;
|
||||
Stats::Statistics<float> statsQuantil;
|
||||
Stats::Statistics<float> tmp;
|
||||
CombinedStats<float> statsAVG;
|
||||
CombinedStats<float> statsMedian;
|
||||
CombinedStats<float> statsSTD;
|
||||
CombinedStats<float> statsQuantil;
|
||||
CombinedStats<float> tmp;
|
||||
|
||||
std::string evaluationName = "prologic/tmp";
|
||||
|
||||
std::vector<std::array<float, 3>> error;
|
||||
std::ofstream error_out;
|
||||
error_out.open(Settings::errorDir + evaluationName + "_error_path1" + ".csv", std::ios_base::app);
|
||||
for (size_t walkIdx = 0; walkIdx < Settings::data.CurrentPath.training.size(); walkIdx++)
|
||||
{
|
||||
std::cout << "Executing walk " << walkIdx << "\n";
|
||||
for (int i = 0; i < 1; ++i)
|
||||
{
|
||||
std::cout << "Start of iteration " << i << "\n";
|
||||
|
||||
tmp = run(Settings::data.CurrentPath, walkIdx, evaluationName);
|
||||
|
||||
statsAVG.ftm.add(tmp.ftm.getAvg());
|
||||
statsMedian.ftm.add(tmp.ftm.getMedian());
|
||||
statsSTD.ftm.add(tmp.ftm.getStdDev());
|
||||
statsQuantil.ftm.add(tmp.ftm.getQuantile(0.75));
|
||||
|
||||
statsAVG.rssi.add(tmp.rssi.getAvg());
|
||||
statsMedian.rssi.add(tmp.rssi.getMedian());
|
||||
statsSTD.rssi.add(tmp.rssi.getStdDev());
|
||||
statsQuantil.rssi.add(tmp.rssi.getQuantile(0.75));
|
||||
|
||||
std::cout << "Iteration " << i << " completed" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "==========================================================" << std::endl;
|
||||
std::cout << "Average of all statistical data FTM: " << std::endl;
|
||||
std::cout << "Median: " << statsMedian.ftm.getAvg() << std::endl;
|
||||
std::cout << "Average: " << statsAVG.ftm.getAvg() << std::endl;
|
||||
std::cout << "Standard Deviation: " << statsSTD.ftm.getAvg() << std::endl;
|
||||
std::cout << "75 Quantil: " << statsQuantil.ftm.getAvg() << std::endl;
|
||||
std::cout << "==========================================================" << std::endl;
|
||||
|
||||
std::cout << "==========================================================" << std::endl;
|
||||
std::cout << "Average of all statistical data RSSI: " << std::endl;
|
||||
std::cout << "Median: " << statsMedian.rssi.getAvg() << std::endl;
|
||||
std::cout << "Average: " << statsAVG.rssi.getAvg() << std::endl;
|
||||
std::cout << "Standard Deviation: " << statsSTD.rssi.getAvg() << std::endl;
|
||||
std::cout << "75 Quantil: " << statsQuantil.rssi.getAvg() << std::endl;
|
||||
std::cout << "==========================================================" << std::endl;
|
||||
|
||||
|
||||
|
||||
//std::vector<std::array<float, 3>> error;
|
||||
//std::ofstream error_out;
|
||||
//error_out.open(Settings::errorDir + evaluationName + "_error_path1" + ".csv", std::ios_base::app);
|
||||
|
||||
|
||||
//for (kalman_procNoiseDistStdDev = 0.8f; kalman_procNoiseDistStdDev < 1.5f; kalman_procNoiseDistStdDev += 0.1f)
|
||||
@@ -489,24 +449,24 @@ int main(int argc, char** argv)
|
||||
// for (kalman_procNoiseVelStdDev = 0.1f; kalman_procNoiseVelStdDev < 0.5f; kalman_procNoiseVelStdDev += 0.1f)
|
||||
// {
|
||||
|
||||
for (size_t walkIdx = 0; walkIdx < 6; walkIdx++)
|
||||
{
|
||||
std::cout << "Executing walk " << walkIdx << "\n";
|
||||
for (int i = 0; i < 1; ++i)
|
||||
{
|
||||
std::cout << "Start of iteration " << i << "\n";
|
||||
//for (size_t walkIdx = 0; walkIdx < Settings::data.CurrentPath.training.size(); walkIdx++)
|
||||
//{
|
||||
// std::cout << "Executing walk " << walkIdx << "\n";
|
||||
// for (int i = 0; i < 1; ++i)
|
||||
// {
|
||||
// std::cout << "Start of iteration " << i << "\n";
|
||||
|
||||
tmp = run(Settings::data.CurrentPath, walkIdx, evaluationName);
|
||||
statsMedian.add(tmp.getMedian());
|
||||
statsAVG.add(tmp.getAvg());
|
||||
statsSTD.add(tmp.getStdDev());
|
||||
statsQuantil.add(tmp.getQuantile(0.75));
|
||||
// tmp = run(Settings::data.CurrentPath, walkIdx, evaluationName);
|
||||
// statsMedian.add(tmp.getMedian());
|
||||
// statsAVG.add(tmp.getAvg());
|
||||
// statsSTD.add(tmp.getStdDev());
|
||||
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||
|
||||
std::cout << kalman_procNoiseDistStdDev << " " << kalman_procNoiseVelStdDev << std::endl;
|
||||
std::cout << "Iteration " << i << " completed" << std::endl;
|
||||
// std::cout << kalman_procNoiseDistStdDev << " " << kalman_procNoiseVelStdDev << std::endl;
|
||||
// std::cout << "Iteration " << i << " completed" << std::endl;
|
||||
|
||||
}
|
||||
}
|
||||
// }
|
||||
//}
|
||||
|
||||
|
||||
// error.push_back({{ kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev, statsAVG.getAvg() }});
|
||||
@@ -536,38 +496,6 @@ int main(int argc, char** argv)
|
||||
//error_out.close();
|
||||
|
||||
|
||||
//for(int i = 0; i < 2; ++i){
|
||||
//
|
||||
// tmp = run(Settings::data.CurrentPath, 0, evaluationName);
|
||||
// statsMedian.add(tmp.getMedian());
|
||||
// statsAVG.add(tmp.getAvg());
|
||||
// statsSTD.add(tmp.getStdDev());
|
||||
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||
|
||||
// std::cout << "Iteration " << i << " completed" << std::endl;
|
||||
//}
|
||||
|
||||
std::cout << "==========================================================" << std::endl;
|
||||
std::cout << "Average of all statistical data: " << std::endl;
|
||||
std::cout << "Median: " << statsMedian.getAvg() << std::endl;
|
||||
std::cout << "Average: " << statsAVG.getAvg() << std::endl;
|
||||
std::cout << "Standard Deviation: " << statsSTD.getAvg() << std::endl;
|
||||
std::cout << "75 Quantil: " << statsQuantil.getAvg() << std::endl;
|
||||
std::cout << "==========================================================" << std::endl;
|
||||
|
||||
//EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS
|
||||
std::ofstream finalStatisticFile;
|
||||
finalStatisticFile.open (Settings::errorDir + evaluationName + ".csv", std::ios_base::app);
|
||||
|
||||
finalStatisticFile << "========================================================== \n";
|
||||
finalStatisticFile << "Average of all statistical data: \n";
|
||||
finalStatisticFile << "Median: " << statsMedian.getAvg() << "\n";
|
||||
finalStatisticFile << "Average: " << statsAVG.getAvg() << "\n";
|
||||
finalStatisticFile << "Standard Deviation: " << statsSTD.getAvg() << "\n";
|
||||
finalStatisticFile << "75 Quantil: " << statsQuantil.getAvg() << "\n";
|
||||
finalStatisticFile << "========================================================== \n";
|
||||
|
||||
finalStatisticFile.close();
|
||||
|
||||
//std::this_thread::sleep_for(std::chrono::seconds(60));
|
||||
|
||||
|
||||
@@ -103,7 +103,6 @@ static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std:
|
||||
auto init = std::make_unique<MyPFInitUniform>(&mesh); // uniform distribution
|
||||
auto eval = std::make_unique<MyPFEval>();
|
||||
eval->assignProps = true;
|
||||
eval->kalmanMap = kalmanMap;
|
||||
|
||||
//auto trans = std::make_unique<MyPFTrans>(mesh);
|
||||
auto trans = std::make_unique<MyPFTransStatic>();
|
||||
|
||||
Reference in New Issue
Block a user