This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
DSem1/presentation/chapters/system.tex
2018-06-05 16:04:11 +02:00

155 lines
4.9 KiB
TeX

\newcommand{\mPosAP}{\varrho} % char for access point position vector
\newcommand{\mPos}{\rho} % char for positions
\newcommand{\mPosVec}{\vec{\mPos}} % position vector
\newcommand{\mRssi}{s} % client signal strength measurements
\newcommand{\mRssiVec}{\vec{s}} % client signal strength measurements
\newcommand{\mRssiVecWiFi}{\vec{s}} % client signal strength measurements
\newcommand{\mPLE}{\ensuremath{\gamma}} % path-loss exponent
\newcommand{\mTXP}{\ensuremath{P_0}} % tx-power
\newcommand{\mWAF}{\ensuremath{\beta}} % wall attenuation factor
\newcommand{\mGaussNoise}{\ensuremath{\mathcal{X}}}
\newcommand{\mMdlDist}{\ensuremath{d}} % distance used within propagation models
\newcommand{\mState}{q} % state variable
\newcommand{\mStateVec}{\vec{q}} % state vector variable
\newcommand{\mObs}{o} % observation variable
\newcommand{\mObsVec}{\vec{o}} % observation vector variable
\newcommand{\mObsWifi}{\vec{o}_{\text{wifi}}} % wifi observation
\newcommand{\mPressure}{\rho}
\newcommand{\mObsPressure}{\mPressure_\text{rel}} % symbol for observation pressure
\newcommand{\mStatePressure}{\hat{\mPressure}_\text{rel}} % symbol for state pressure
\newcommand{\mHeading}{\theta}
\newcommand{\mObsHeading}{\Delta\mHeading} % symbol used for the observation heading
\newcommand{\mStateHeading}{\mHeading} % symbol used for the state heading
\newcommand{\mSteps}{n_\text{steps}}
\newcommand{\mObsSteps}{\mSteps}
\newcommand{\mActivity}{\Omega}
\newcommand{\mObsActivity}{\mActivity}
\newcommand{\R}{\mathbb{R}}
%\newcommand{\N}{\mathbb{N}}
\section{Indoor Lokalisierung}
\subsection{Überblick}
\begin{frame}[fragile]
\frametitle{Indoor Lokalisierung}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{gfx/info_graphic}
\end{figure}%
\end{frame}
\begin{frame}[fragile]
\frametitle{Indoor Lokalisierung}
\small
\begin{minipage}{0.49\textwidth}
Unbekannter Zustand
\begin{equation*}
\mStateVec = (\underbrace{x, y, z}_{\text{Position}}, \underbrace{\mStateHeading}_{\text{Richtung}}),\enskip
x, y, z, \mStateHeading \in \R
\end{equation*}
\vspace{1mm}
\end{minipage}
%
\begin{minipage}{0.49\textwidth}
Smartphone Sensordaten
\begin{equation*}
\mObsVec = (\mRssiVec_\text{wifi}, \mRssiVec_\text{beacon}, \mObsSteps, \mObsHeading, \mStateHeading, \mObsActivity, ) \enspace .
\end{equation*}
\vspace{1mm}
\end{minipage}
Sensorfusion über rekursive Dichteschätzung
\begin{equation*}
\arraycolsep=1.2pt
%\begin{array}{ll}
p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto
\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}}
\int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}}
\underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}}
%\end{array}
%\label{equ:bayesInt}
\end{equation*}
%\vspace{1mm}
%
\begin{equation*}
\begin{aligned}
p(\vec{o}_t \mid \vec{q}_t) &=
\,p(\mRssiVec_\text{wifi} \mid \vec{q}_t)%_\text{wifi}
\,p(\mRssiVec_\text{beacon} \mid \vec{q}_t)%_\text{beacon}
\,p(\mStateHeading \mid \vec{q}_t)%_\text{kompass}
\,p(\mObsActivity \mid \vec{q}_t)%_\text{activity}
\footnote{\tiny Annahme: Sensoren sind statistisch unabhängig}
\\
p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1}) &= \text{Bewegungsmodell mit Zusatzwissen}
\end{aligned}
\end{equation*}
\end{frame}
\subsection{Bewegungsmodell}
\begin{frame}[fragile]
\frametitle{Bewegungsmodell}% $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ }
%\emph{Wo könnte ich in 10 Sekunden sein?}
%
\centering\includegraphics<1>[height=6cm]{gfx/plan1.pdf}%
\centering\includegraphics<2>[height=6cm]{gfx/plan2.pdf}%
\centering\includegraphics<3>[height=6cm]{gfx/importance.pdf}%
\centering\includegraphics<4>[height=6cm]{gfx/dijkstra.pdf}%
\centering\includegraphics<5>[height=6cm]{gfx/map1}%
\end{frame}
\subsection{Sensorik}
\begin{frame}[fragile]
\frametitle{Sensorik - Wi-Fi}
\begin{equation*}
p(\vec{o}_t \mid \vec{q}_t)_\text{wifi} =
p(\mRssiVecWiFi \mid \mPosVec) =
\prod_{\mRssi_{i} \in \mRssiVec{}} p(\mRssi_{i} \mid \mPosVec)
\footnote{\tiny Annahme: Messungen von Access-Points sind statistisch unabhängig}
,\enskip
%\mPos = (x,y,z)^T
\mPosVec \in \R^3
%\label{eq:wifiObs}
\end{equation*}
%
\begin{equation*}
p(\mRssi_i \mid \mPosVec) =
\mathcal{N}(\mRssi_i \mid \mu_{i,\mPosVec}, \sigma_{i,\mPosVec}^2)
%\label{eq:wifiProb}
\end{equation*}
%
\begin{equation*}
\mRssi = {\mTXP{}} - 10 \mPLE{} + \log_{10} \frac{d}{d_0} + n \beta + \mGaussNoise{}
%\label{eq:logDistModel}
\end{equation*}
\includegraphics[width=4.5cm]{gfx/fingerprints.pdf}
\includegraphics[width=4.5cm]{gfx/opt.pdf}
\includegraphics[width=4.5cm]{gfx/wifiMultimodality.pdf}
\end{frame}