This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
DSem1/walky/ParticleWalkNavMesh.h
2018-06-05 16:55:45 +02:00

475 lines
14 KiB
C++

#ifndef PARTICLEWALKNAVMESH_H
#define PARTICLEWALKNAVMESH_H
#include "file.h"
#include <Indoor/floorplan/v2/Floorplan.h>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/floorplan/v2/FloorplanHelper.h>
#include <Indoor/navMesh/NavMeshTriangle.h>
#include <Indoor/navMesh/NavMesh.h>
#include <Indoor/navMesh/NavMeshFactory.h>
#include <Indoor/navMesh/NavMeshDebug.h>
#include <Indoor/navMesh/walk/NavMeshWalkSimple.h>
#include <Indoor/navMesh/walk/NavMeshWalkRandom.h>
#include <Indoor/navMesh/walk/NavMeshWalkSemiRandom.h>
#include <Indoor/navMesh/walk/NavMeshWalkSemiDirected.h>
#include <Indoor/navMesh/meta/NavMeshDijkstra.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/offline/FilePlayer.h>
#include <Indoor/math/Interpolator.h>
#include <Indoor/synthetic/SyntheticWalker.h>
#include <Indoor/synthetic/SyntheticSteps.h>
#include <Indoor/synthetic/SyntheticTurns.h>
#include <Indoor/sensors/imu/StepDetection.h>
#include <Indoor/sensors/imu/TurnDetection.h>
#include <KLib/math/filter/particles/ParticleFilter.h>
#include <KLib/math/filter/particles/ParticleFilterEvaluation.h>
#include <KLib/math/filter/particles/ParticleFilterInitializer.h>
#include <KLib/math/filter/particles/ParticleFilterTransition.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <KLib/math/statistics/Statistics.h>
#include "SlimParticleFilter.h"
#include <thread>
#include "WalkViz.h"
#include "WalkViz3.h"
#include "ProbViz.h"
class ParticleWalkNavMesh {
public:
struct MyNavMeshTria : public NM::NavMeshTriangle, public NM::NavMeshTriangleDijkstra {
public:
MyNavMeshTria(Point3 p1, Point3 p2, Point3 p3, uint8_t t) : NM::NavMeshTriangle(p1,p2,p3,t) {;}
};
struct MyWalkState {
GridPoint position;
};
struct MyControl {
int steps = 0;
float headChange_rad = 0;
};
struct MyState {
//GridPoint pos;
NM::NavMeshLocation<MyNavMeshTria> pos;
Heading head = Heading(0);
MyState operator * (const double w) const {
MyState res; res.pos.pos = this->pos.pos*w; return res;
}
MyState& operator += (const MyState& s) {
this->pos.pos += s.pos.pos;
return *this;
}
MyState& operator /= (const double d) {
this->pos.pos /= d;
return *this;
}
};
struct MyObservation {
};
struct Test : public SyntheticSteps::Listener, public SyntheticTurns::Listener, public Offline::Listener {
MyControl ctrl;
PoseDetection* poseDetect = new PoseDetection();
StepDetection* stepDetect = new StepDetection(); // TODO
TurnDetection* turnDetect = new TurnDetection(poseDetect);
public:
void onSyntheticStepData(const Timestamp ts, const AccelerometerData acc) override {
const bool step = stepDetect->add(ts, acc);
if (step) {++ctrl.steps;}
}
void onSyntheticTurnData(const Timestamp ts, const AccelerometerData acc, const GyroscopeData gyro) override {
poseDetect->addAccelerometer(ts, acc);
const float rad = turnDetect->addGyroscope(ts, gyro);
ctrl.headChange_rad += rad;
}
virtual void onGyroscope(const Timestamp ts, const GyroscopeData gyro) {
const float rad = turnDetect->addGyroscope(ts, gyro);
ctrl.headChange_rad += rad;
}
virtual void onAccelerometer(const Timestamp ts, const AccelerometerData acc) {
poseDetect->addAccelerometer(ts, acc);
const bool step = stepDetect->add(ts, acc);
if (step) {++ctrl.steps;}
}
virtual void onGravity(const Timestamp ts, const GravityData data) {};
virtual void onWiFi(const Timestamp ts, const WiFiMeasurements data) {};
virtual void onBarometer(const Timestamp ts, const BarometerData data) {};
virtual void onGPS(const Timestamp ts, const GPSData data) {};
virtual void onCompass(const Timestamp ts, const CompassData data) {};
virtual void onMagnetometer(const Timestamp ts, const MagnetometerData data) {};
void reset() {
ctrl.steps = 0;
ctrl.headChange_rad = 0;
}
};
//WalkViz3 viz;
NM::NavMeshDebug vizNM;
const int gridSize_cm = 50;//22;
const int numParticles = 3333; //3333;
void run() {
Test test;
#define REAL
#ifdef FAKE
// load the map and ground-truth
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::get("map2b.xml")); std::vector<int> ids = {0,1,2,3,4,5,6,7,8,9};
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::get("map3b_for_nav_mesh.xml")); std::vector<int> ids = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::get("map3c.xml")); std::vector<int> ids = {0,1,2,3,4,5,6,7,8,9,10};
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::getData("/maps/map_stair1.xml")); std::vector<int> ids = {0,1,2,3,4,5,6};
// get a walk
SyntheticPath walk1;
walk1.create(map, ids);
walk1.smooth(1,3);
//viz.showPath(walk1);
// fake estimation sensor data
SyntheticWalker synthWalker(walk1);
SyntheticSteps synSteps(&synthWalker, 0.70, 0.35, 0.00005, 0.6); // TODO, why does step-sigma have such a huge impact?
SyntheticTurns synTurns(&synthWalker, 0.01,0.05, 0.4);
synSteps.addListener(&test);
synTurns.addListener(&test);
const Point3 startP3 = walk1.getPosAfterDistance(0);
#endif
#ifdef REAL
//float startHead = 0;
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::getData("/walks/walk_in_circles_around_hole_map.xml")); const Point3 startP3 = Point3(0,0,0); vizNM.plot.getAxisZ().setRange(0, 15);
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::getData("/walks/walk_stair_down_and_up_again_map_b.xml"));const Point3 startP3 = Point3(0,0,6);
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::getData("/maps/map_free.xml")); const Point3 startP3 = Point3(0,0,0); vizNM.plot.getAxisZ().setRange(0, 15);
// Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::getData("/maps/SHL41_nm.xml"));
// map->floors[0]->enabled = false; map->floors[1]->enabled = false; map->floors[3]->enabled = false;
// Offline::FileReader reader(File::getData("/walks/walk_in_circles_around_hole.csv"));
// const Point3 startP3 = Point3(61.0, 39.8, 7.4); float startHead = M_PI/2;
// vizNM.plot.getAxisX().setRange(50, 64);
// vizNM.plot.getAxisY().setRange(37, 47);
// vizNM.plot.getAxisZ().setRange(7.3, 7.5);
// Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::getData("/walks/walk_in_circles_around_hole_map.xml")); const Point3 startP3 = Point3(0,0,0); vizNM.plot.getAxisZ().setRange(0, 15);
// Offline::FileReader reader(File::getData("/walks/walk_in_circles_around_hole.csv")); //const Point3 startP3 = Point3(0,0,0);
// const float startHead = 0;
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(File::getData("/walks/walk_stair_down_and_up_again_map_b.xml"));const Point3 startP3 = Point3(0,0,6);
Offline::FileReader reader(File::getData("/walks/walk_stair_down_and_up_again.csv"));
const float startHead = 0;
Offline::FilePlayer player(&reader, &test);
#endif
//viz.addMap(map);
// build the NavMesh
NM::NavMesh<MyNavMeshTria> mesh;
NM::NavMeshSettings settings;
NM::NavMeshFactory<MyNavMeshTria> fac(&mesh, settings);
fac.build(map);
//NM::NavMeshDebug::show(mesh);
vizNM.addMesh(mesh);
#define WALK_MODE 4
//#define WALK_USE_MANY
#if (WALK_MODE==1)
using MeshWalker = NM::NavMeshWalkSimple<MyNavMeshTria>;
// Distribution::Normal<float> dDistPlane(0.70, 0.13); // walker walks straight -> we have to add noise ourselves
// Distribution::Normal<float> dDistStair(0.35, 0.13); // walker walks straight -> we have to add noise ourselves
// Distribution::Normal<float> dHead(1, 0.09);
Distribution::Normal<float> dDistPlane(0.70, 0.09); // walker walks straight -> we have to add noise ourselves
Distribution::Normal<float> dDistStair(0.35, 0.09); // walker walks straight -> we have to add noise ourselves
//Distribution::Normal<float> dHeadPercent(1, 0.09);
Distribution::Normal<float> dHead(0, 0.08);
#elif (WALK_MODE==2)
using MeshWalker = NM::NavMeshWalkRandom<MyNavMeshTria>;
Distribution::Normal<float> dDistPlane(0.70, 0.0009);
Distribution::Normal<float> dDistStair(0.35, 0.0009);
Distribution::Normal<float> dHead(0, 0.0005);
#elif (WALK_MODE==3)
using MeshWalker = NM::NavMeshWalkSemiRandom<MyNavMeshTria>;
Distribution::Normal<float> dDistPlane(0.70, 0.0009); // sieht schlecht aus mit diesen params!
Distribution::Normal<float> dDistStair(0.35, 0.0009);
Distribution::Normal<float> dHead(0, 0.0005);
#elif (WALK_MODE==4)
using MeshWalker = NM::NavMeshWalkSemiDirected<MyNavMeshTria>;
Distribution::Const<float> dDistPlane(0.65); // no scatter needed
Distribution::Const<float> dDistStair(0.35);
Distribution::Const<float> dHead(0);
#endif
MeshWalker walker(mesh);
// eval
const float stepSizeSigma_m = 0.15;//0.1;
const float turnSigma_rad = Angle::degToRad(5.5); //2.5);
walker.addEvaluator(new NM::WalkEvalDistance<MyNavMeshTria>(stepSizeSigma_m));
walker.addEvaluator(new NM::WalkEvalHeadingStartEndNormal<MyNavMeshTria>(turnSigma_rad));
// path
NM::NavMeshDijkstra::stamp(mesh, Point3(-0.3, -0.3, 0.0)); // walkin down the stair
walker.addEvaluator(new NM::WalkEvalApproachesTarget<MyNavMeshTria>());
std::vector<MyState> particles; particles.resize(numParticles);
// initialize particles
// //const GridPoint startPoint(startP3.x*100, startP3.y*100, startP3.z*100);
// for (MyState& p : particles) {
// p.pos = startP3;
// }
int cnt = 0;
//auto pfInit = make_unique<MyPfInit>(new MyPfInit(startP3));
//K::ParticleFilter<MyState, MyControl, MyObservation> pf(1000, std::move(pfInit);
auto fInit = [startP3,startHead,&mesh] (SPF::Particle<MyState>& p) {
p.state.pos = mesh.getLocation(startP3);
p.state.head = Heading(startHead);
p.weight = 1;
};
auto fEval = [] (const SPF::Particle<MyState>& p, const MyObservation& observation) {
return 1.0;
};
MyControl ctrl;
MyObservation obs;
SPF::Filter<MyState, MyControl, MyObservation, false> pf; // OpenMP
pf.initialize(numParticles, fInit);
K::Statistics<float> sss;
std::this_thread::sleep_for(std::chrono::milliseconds(500));
//gewichten basierend auf control und nicht control + distMod(gen)!!
for (int i = 0; i < 300000; ++i) {
// increment the walk
const Timestamp timePassed = Timestamp::fromMS(10);
#ifdef FAKE
const int updateEvery = 40;
if (!synthWalker.done()) {
const Point3 pos = synthWalker.tick(timePassed);
//viz.setGT(pos);
vizNM.setGT(pos);
} else {
sleep(1000);
}
#endif
#ifdef REAL
player.tick();
const int updateEvery = 150;
#endif
auto fTransOne = [&] (SPF::Particle<MyState>& p, const MyControl& ctrl) {
NM::NavMeshWalkParams<MyNavMeshTria> params;
params.stepSizes.stepSizeFloor_m = dDistPlane.draw();
params.stepSizes.stepSizeStair_m = dDistStair.draw();
params.start = p.state.pos;
params.heading = p.state.head + test.ctrl.headChange_rad + dHead.draw();
params.numSteps = 1;
const MeshWalker::ResultEntry e = walker.getOne(params);
p.state.pos = e.location;
p.state.head = e.heading;
p.weight *= e.probability;
};
auto fTransMany = [&] (std::vector<SPF::Particle<MyState>>& particles, const MyControl& ctrl) {
std::vector<SPF::Particle<MyState>> newParticles;
for (const SPF::Particle<MyState>& _p : particles) {
NM::NavMeshWalkParams<MyNavMeshTria> params;
params.stepSizes.stepSizeFloor_m = dDistPlane.draw();
params.stepSizes.stepSizeStair_m = dDistStair.draw();
params.start = _p.state.pos;
params.heading = _p.state.head + test.ctrl.headChange_rad + dHead.draw();
params.numSteps = 1;
const MeshWalker::ResultList res = walker.getMany(params);
for (const MeshWalker::ResultEntry& e : res) {
SPF::Particle<MyState> p = _p; // particle copy
p.state.pos = e.location;
p.state.head = e.heading;
p.weight *= e.probability;
newParticles.push_back(p);
}
}
auto comp = [] (const SPF::Particle<MyState>& p1, const SPF::Particle<MyState>& p2) {return p1.weight > p2.weight;};
std::sort(newParticles.begin(), newParticles.end(), comp);
newParticles.erase(newParticles.begin()+numParticles, newParticles.end());
std::swap(particles, newParticles);
};
// every step
static int cnt = 0; ++cnt;
//++cnt; // 500 msec
//if (cnt % 50 == 0) {
if (test.ctrl.steps != 0) {
//viz.particles.clear();
auto t1 = std::chrono::system_clock::now();
#ifdef WALK_USE_MANY
MyState est = pf.update(ctrl, obs, fTransMany, fEval);
#else
MyState est = pf.update(ctrl, obs, fTransOne, fEval);
#endif
auto t2 = std::chrono::system_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1);
sss.add(duration.count());
std::cout << sss.asString() << std::endl;
//viz.pathEstimated.add(K::GnuplotPoint3(est.pos.pos.x, est.pos.pos.y, est.pos.pos.z));
vizNM.pathEstimated.add(K::GnuplotPoint3(est.pos.pos.x, est.pos.pos.y, est.pos.pos.z));
//viz.showParticles(pf.getParticles());
test.reset();
//viz.setCurPos(est.pos.pos);
vizNM.showParticles(pf.getParticles());
vizNM.setCurPos(est.pos.pos);
PERF_DUMP();
//std::this_thread::sleep_for(std::chrono::milliseconds(50));
}
if (cnt % updateEvery == 0) {
static int nr = 0;
//viz.plot.getView().setCamera(45, (cnt/70)%360);
//viz.plot.getView().setEnabled(true);
//viz.draw();
//viz.gp << "unset colorbox\n";
vizNM.gp << "unset colorbox\n";
vizNM.plot.getView().setCamera(60, (cnt/70)%360);
vizNM.plot.getView().setEnabled(true);
//viz.gp.setTerminal("pngcairo", K::GnuplotSize(20,15));
//viz.gp.setTerminal("pngcairo", K::GnuplotSize(500*3,350*3));
//viz.gp.setOutput("/tmp/123/" + std::to_string(nr) + ".png");
//vizNM.gp.setTerminal("pngcairo", K::GnuplotSize(25,19));
//vizNM.gp.setOutput("/tmp/ani/" + std::to_string(nr) + ".png");
// ffmpeg -r 15 -i %d.png -preset slow -crf 22 -pix_fmt yuv420p -b:v 700k -filter:v "crop=496:464:140:40" out.mp4
vizNM.draw();
++nr;
}
}
}
};
#endif // PARTICLEWALKNAVMESH_H