\newcommand{\mPosVec}{\vec{\mPos}} % position vector \newcommand{\mRssiVec}{\vec{s}} % client signal strength measurements \newcommand{\mState}{q} % state variable \newcommand{\mStateVec}{\vec{q}} % state vector variable \newcommand{\mObs}{o} % observation variable \newcommand{\mObsVec}{\vec{o}} % observation vector variable \newcommand{\mObsWifi}{\vec{o}_{\text{wifi}}} % wifi observation \newcommand{\mPressure}{\rho} \newcommand{\mObsPressure}{\mPressure_\text{rel}} % symbol for observation pressure \newcommand{\mStatePressure}{\hat{\mPressure}_\text{rel}} % symbol for state pressure \newcommand{\mHeading}{\theta} \newcommand{\mObsHeading}{\Delta\mHeading} % symbol used for the observation heading \newcommand{\mStateHeading}{\mHeading} % symbol used for the state heading \newcommand{\mSteps}{n_\text{steps}} \newcommand{\mObsSteps}{\mSteps} \newcommand{\mActivity}{\Omega} \newcommand{\mObsActivity}{\mActivity} \newcommand{\R}{\mathbb{R}} %\newcommand{\N}{\mathbb{N}} \begin{frame}[fragile] \frametitle{System} %\includegraphics[width=4cm]{gfx/map1} \small \begin{minipage}{0.49\textwidth} Unbekannter Zustand \begin{equation*} \mStateVec = (\underbrace{x, y, z}_{\text{Position}}, \underbrace{\mStateHeading}_{\text{Richtung}}),\enskip x, y, z, \mStateHeading \in \R \end{equation*} \vspace{1mm} \end{minipage} % \begin{minipage}{0.49\textwidth} Smartphone Sensordaten \begin{equation*} \mObsVec = (\mRssiVec_\text{wifi}, \mRssiVec_\text{beacon}, \mObsSteps, \mObsHeading, \mStateHeading, \mObsActivity, ) \enspace . \end{equation*} \vspace{1mm} \end{minipage} Sensorfusion über rekursive Dichteschätzung \begin{equation*} \arraycolsep=1.2pt %\begin{array}{ll} p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto \underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}} \int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}} \underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} %\end{array} %\label{equ:bayesInt} \end{equation*} %\vspace{1mm} % \begin{equation*} \begin{aligned} p(\vec{o}_t \mid \vec{q}_t) &= \,p(\mRssiVec_\text{wifi} \mid \vec{q}_t)%_\text{wifi} \,p(\mRssiVec_\text{beacon} \mid \vec{q}_t)%_\text{beacon} \,p(\mStateHeading \mid \vec{q}_t)%_\text{kompass} \,p(\mObsActivity \mid \vec{q}_t)%_\text{activity} \footnote{\tiny Annahme: Sensoren sind statistisch unabhängig} \\ p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1}) &= \text{Bewegungsmodell mit Zusatzwissen} \end{aligned} \end{equation*} \end{frame}